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Abstract

Background: In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of late-
onset Alzheimer's disease (LOAD) and translate the associations to causation.

Methods: We conducted ATAC-seq profiling using NeuN sorted-nuclei from 40 frozen brain tissues to determine
LOAD-specific changes in chromatin accessibility landscape in a cell-type specific manner.

Results: We identified 211 LOAD-specific differential chromatin accessibility sites in neuronal-nuclei, four of which
overlapped with LOAD-GWAS regions (£100 kb of SNP). While the non-neuronal nuclei did not show LOAD-specific
differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in females. Seven of these
sex-dependent sites in the non-neuronal samples overlapped LOAD-GWAS regions including APOE. LOAD loci were
functionally validated using single-nuclei RNA-seq datasets.

Conclusions: Using brain sorted-nuclei enabled the identification of sex-dependent cell type-specific LOAD
alterations in chromatin structure. These findings enhance the interpretation of LOAD-GWAS discoveries, provide
potential pathomechanisms, and suggest novel LOAD-loci.
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Large multi-center genome-wide association studies
(GWAS) have identified associations between numerous
genomic loci and late-onset Alzheimer’s disease (LOAD)
[1-6]. The most recent GWAS meta-analysis reported a
total of 25 LOAD-GWAS regions [7]. However, the pre-
cise disease-responsible genes, the specific causal genetic
variants, and the molecular mechanisms of action that
mediate their pathogenic effects are yet to be explained.
Most LOAD-GWAS SNPs are in noncoding (intergenic
and intragenic) genomic regions, and thus may have a
gene regulatory function. Supporting this hypothesis, dif-
ferential gene expression in brain tissues have been de-
scribed between LOAD and healthy controls [8-10].
Moreover, several expression quantitative trait loci (eQTL)
studies in brain tissues from cognitively normal [11] and
LOAD [12-15] individuals reported overlaps with LOAD-
GWAS loci. Collectively, these observations suggest that
dysregulation of gene expression plays an important role
in LOAD pathogenesis [16]. Noteworthy, integration of
findings from LOAD epigenome wide association studies
(EWAS) and GWAS also identified a number of shared
loci [17-24], providing further support for the role of gene
dysregulation in LOAD pathogenesis.

To date, most brain expression, DNA-methylation,
and chromatin studies have used brain tissue homoge-
nates that represent multiple cell-types, i.e. various types

brain tissue makes it difficult to determine the specific
brain cell-type responsible for the changes in gene ex-
pression and in epigenome landscape. The mixture of
cell-types could potentially mask signals corresponding
to a particular cell-type, especially if the causal cell types
comprise a small fraction of the entire sample. An add-
itional shortcoming of studying bulk brain tissues is the
bias related to sample-to-sample differences in the cell-
type composition of the tissue. The obstacle of variability
in the neuron:glia proportions across samples is even
more pronounced when analyzing disease-affected brain
tissues that underwent the neurodegeneration processes
of neuronal loss and gliosis. Single cell experimental ap-
proaches can circumvent these limitations; however,
these methods are costly for studying larger sample sizes
and have been underutilized in the field of LOAD genet-
ics. Frozen tissues pose additional technical challenges
as it is difficult to isolate intact cell bodies. Fluorescence
Activated Nuclei Sorting (FANS) was developed to ex-
tract, purify and sort nuclei (vs. cells) from frozen brain
tissues [25] using nuclei neuronal markers, such as
NeuN, to greatly reduce cellular heterogeneity found in
bulk tissues, and allow characterization of neuronal
(NeuN+) and non-neuronal (NeuN-) cell populations.
Recently, two studies used FANS to analyze LOAD-
specific changes in DNA-methylation on a whole-



Barrera et al. Molecular Neurodegeneration (2021) 16:58

genome level [26] and across the APOE locus [27]. Fur-
thermore, two new studies used single-cell (sc)RNA-seq
from cortex of LOAD patients. The first found that the
strongest LOAD-associated changes appeared early in
pathological progression and were highly cell-type spe-
cific [28], and the second identified LOAD-associated
gene dysregulation in specific cell subpopulations, par-
ticularly for APOE and transcription factors [29]. These
results further highlight the importance of cell-type spe-
cific analysis of human brain tissues to understanding of
the molecular underpinnings and cellular basis of LOAD.

In this study, we performed NeuN-FANS from 40 ar-
chived frozen human brain samples (19 LOAD, 21 nor-
mal), and used the assay for transposase-accessible
chromatin using sequencing (ATAC-seq) to characterize
the chromatin accessibility landscape in neuronal and
non-neuronal nuclei. We identified over 170,000 chro-
matin accessibility differences between neuronal and
non-neuronal nuclei. We also report LOAD-specific dif-
ferences in chromatin accessibility in both neurons and
non-neurons. Interestingly, while the neuronal changes
appeared to be independent of sex, in the non-neuronal
cells LOAD differences in chromatin accessibility were
detected only in females. LOAD-specific differences in
chromatin accessibility significantly overlap with known
LOAD GWAS regions, and also point to new candidate
LOAD loci. These results provide new insights into the
mechanistic and sex-specific pathogenesis of this
disorder.

Methods

Human brain tissue samples

Following quality-control filtering, the final dataset was
generated using fresh-frozen temporal cortex from
neurologically healthy controls (#z =21), mild LOAD
(n=16), and severe LOAD (n = 3) patients. These sam-
ples were obtained from the Kathleen Price Bryan Brain
Bank (KPBBB) at Duke University, and the demograph-
ics for this cohort are included in Table 1 and detailed
in Supplementary Table 2. Clinical diagnosis of LOAD
was pathologically confirmed using Braak staging (AT8
immunostaining) and amyloid deposition assessment
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(4G8 immunostaining) for all LOAD samples. Braak sta-
ging was used to define mild (stages IV and below) vs.
severe (stages V and VI) LOAD. All donors are Cauca-
sians with APOE 33; post mortem interval (PMI) aver-
aged 7.15h (standard error of the mean (SEM) 0.81).
The archived frozen tissues have high-quality DNA as
required for genomic analyses, and RNA (RIN = 8) suit-
able for quantitative RNA analyses. The project was ap-
proved by the Duke Institutional Review Board (IRB).
The methods described were carried out in accordance
with the relevant guidelines and regulations. Tissue sam-
ples were processed in random pairs of one normal and
one LOAD patient. Tissue homogenization, nuclei ex-
traction, FANS, and tagmentation were performed on
each pair on the same day. Library preparation and se-
quencing was performed blinded to age, sex, and path-
ology. Out of this group of samples four female donors
were analyzed by snRNA-seq, two of which were neuro-
logically healthy controls and two age matched mild
LOAD patients (Braak Stage III). These four samples
were ages 79-90 with PMI averaged 8.02 h (SEM = 1.99)
(Supplementary Table 2, marked *’). Tissue samples
were processed for snRNA-seq on the same day and in
the same 10X Genomics microfluidics chip.

Tissue dissociation and nuclei extraction

Methods were performed according to established pro-
tocols [25, 30, 31] with some modifications. Briefly, 50
mg of frozen temporal cortex (gray matter) was thawed
for 10 min on ice in lysis buffer (0.32 M Sucrose, 5 mM
CaCl2, 3mM magnesium acetate, 0.1 mM EDTA, 10
mM Tris-HCIl pH8, 1mM DTT, 0.1% Triton X-100).
The tissue was gently dissociated and homogenized in a
7 ml dounce tissue homogenizer (Corning) with approxi-
mately 25 strokes of pestle A in 45s, then filtered
through a 100 um cell strainer. The filtered lysate was
transferred to a 14 x 89 mm polypropylene ultracentri-
fuge tube, carefully underlaid with sucrose solution (1.8
M sucrose, 3 mM magnesium acetate, 1 mM DTT, 10
mM Tris-HCl, pH 8) and subjected to ultracentrifuga-
tion at 107,000 RCF for approximately 30 min at 4 °C.
Supernatant and the debris interphase were carefully

Table 1 Demographic description of study cohort. Abbreviations: mild Alzheimer’s disease (MAD), severe Alzheimer’s disease (SAD)

Pathology Individuals Males (%) Age (y) = SD PMI (h) + SD NeuN+ (% + SD)
40 Paired (neuronal and non-neuronal) Normal 21 11 (52.4) 81.10 £ 9.70 791 + 554 3527 +13.26
mAD 16 10 (62.5) 79.75 £ 723 709 £ 5.58 38.59+14.70
SAD 3 1333 7667 £7.77 543 £ 165 19.16 £ 749
Total 40 22 (55) 80.23 + 849 741 £5.26 3539+ 14.16
9 Unpaired (non-neuronal only) Normal 3 0 8467 + 252 13.03 +£4.95 N/A
mAD 6 0 76.50 + 848 1695 + 16.09 N/A
Total 9 0 7922 £ 873 15.64 = 14.64 N/A
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aspirated, and 100 ul PBS (-Mg2+, —Ca2+) was added to
the nuclei pellet. After a 5-min incubation on ice, nuclei
were gently resuspended and transferred to a 1.5ml
polypropylene microcentrifuge tube for staining.

For snRNA-seq downstream experiment, the above
protocol was modified to optimize sample preparation
for single-nuclei sorting. Briefly, 50 mg frozen temporal
cortex (gray matter) was thawed for 20 min on ice in
lysis buffer and ultracentrifuged at 107,000 RCF for ap-
proximately 10 min at 4 °C. Supernatant and the debris
interphase were carefully aspirated, and 500 ul wash and
resuspension buffer (1X PBS, 1% BSA, 0.2 U/ul RNase
Inhibitor) was added to the nuclei pellet. After a 5-min
incubation on ice, nuclei were gently resuspended and
centrifuged at 300 RCF for 5min at 4°C. The super-
natant was again aspirated and 500 ul wash and resus-
pension buffer without RNase Inhibitor (1X PBS, 1%
BSA) was added to the nuclei pellet. After a 1-min incu-
bation on ice, the nuclei were gently resuspended and
filtered through a 35 um strainer. Ten microliters nuclei
were taken for quality assessment and counting prior to
library preparation.

Immunostaining of nuclei

Nuclei were stained in 0.05% BSA, 1% normal goat
serum, DAPI (1 pg/ml), and PE-conjugated anti-NeuN
antibody (1:125, Millipore FCMAB317PE) in PBS
(-Mg2+, -Ca2+), in the dark for 30min at 4°C. A
DAPI-only control was prepared to set gates for sorting.
After staining, nuclei were filtered through a 40 um cell
strainer into a polypropylene round-bottom 5ml tube
and sorted.

Immunofluorescence microscopy

After homogenization and sucrose gradient ultracentri-
fugation, a portion of the nuclei was counted, resus-
pended in 4% PFA, stained, plated on 12 mm coverslips
at 10,000 nuclei per coverslip, incubated 20 min at room
temperature, mounted, and imaged on a confocal
microscope.

Fluorescence-activated nuclei sorting (FANS) of neuronal
and non-neuronal nuclei

Sorting was performed using a MoFlo Astrios flow cyt-
ometer (Beckman Coulter) equipped with a 70 um noz-
zle, operating at 35 psi. Standard gating procedures were
used. Briefly, the first gate allowed separation of intact
nuclei from debris. The second gate allowed us to iden-
tify individual nuclei, and exclude doublets and other ag-
gregates. The third and fourth gates distinguish between
PE+ and PE- nuclei and allowed us to sort and separate
NeuN+ nuclei from NeuN- nuclei. Nuclei were sorted
into 1 ml PBS (-Mg2+, —Ca2+) in a 2 ml polypropylene
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tube pre-coated with 200 ul of 5% BSA and rotated at
20 rpm at 4C.

Omni-ATAC on FANS nuclei

Approximately 100,000-700,000 sorted nuclei (Supple-
mentary Table 2) were used for ATAC-seq library prep-
aration as described in the Omni-ATAC protocol [32].
Libraries were quantified by Qubit, and size distribution
was inspected by Bioanalyzer (Agilent Genomic DNA
chip, Agilent Technologies). Barcoded ATAC-seq librar-
ies were combined into pools of 6 libraries and se-
quenced on an Illumina HiSeq 4000 sequencer (50 bp,
single read) at the Duke Sequencing and Genomic Tech-
nologies shared resource.

Omni-ATAC-seq on bulk tissue

In addition to performing ATAC-seq on NeuN+/-
sorted nuclei, we also compared to ATAC-seq per-
formed on total nuclei isolated from frozen tissue. Ap-
proximately 50,000 nuclei from 25mg of pulverized
frozen tissue were used for the transposition reaction ap-
plying the Omni-ATAC protocol as described previously
[32].

Data processing pipeline

ATAC-seq libraries made from 83 glia samples and 80
neuron samples were sequenced on Hi-seq 4000. Raw
fastq sequencing files were first processed through cuta-
dapt (v 1.9.1) to remove adaptors and bases with quality
scores < 30. Filtered reads were aligned to hgl9 by Bow-
tie2 (v 2.1.0) using default parameters [33]. Bam files
were sorted by samtools (v 0.1.18) and duplicates were
removed by Picard MarkDuplicates. Sequences that
overlapped ENCODE “blacklist” regions (https://sites.
google.com/site/anshulkundaje/projects/blacklists) were
removed, and narrow open chromatin peaks were called
by Model-based Analysis of ChIP-seq (MACS v 2.1),
with parameters --nomodel --shift — 100 --ext 200, using
a FDR cutoff of q<0.01 or 0.05 [34]. For visualization
on the UCSC browser, BigWig files were generated using
wigToBigWig (v 4).

Data quality control

We characterized the quality of all ATAC-seq datasets
by the following metrics, based on ENCODE suggestions
[35] https://genome.ucsc.edu/ENCODE/analysis.html
(Supplementary Table 1): (1) total numbers of reads, (2)
numbers of reads trimmed by cutadapt, (3) total bases
entering cutadapt, (4) quality-trimmed bases by cuta-
dapt, (5) total numbers of reads processed by Bowtie2,
(6) uniquely mappable reads, (7) percentages of align-
ment, (8) read aligned to the mitochondrial chromo-
some, (9) peak calls at FDR q<0.05, (10) peak calls
normalized by sequencing depth, (11) GC content of
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sequences, (12) Non-Redundant Fraction (NRF), which
is equal to the number of distinct uniquely mapped
reads divided by total reads, (13) PCR Bottleneck Coeffi-
cient 1 (PBC1, 14) PCR Bottleneck Coefficient 2 (PBC2).
To reduce the impact of samples with lower quality, we
removed datasets with normalized peak calls at FDR q <
0.01 <100, and any additional replicates that displayed
lower signal-to-noise ratios. The 90 remaining datasets
were analyzed by PCA and hierarchical clustering (hclust
function, method = “ward. D”), of which one NeuN-
sample was identified as an outlier (Supplementary
Fig. 10). After excluding this outlier, we obtained a final
set of 89 datasets from 49 donors (40 donors with
matching NeuN+ and NeuN- data, and 9 donors that
only contained NeuN- data). Sequencing and QC met-
rics for all 89 samples are described in Supplementary
Table 2. The library complexity for these 89 samples are
comparable to ENCODE Data Quality Metrics spread-
sheet published on 2012-04-25 (https://genome.ucsc.
edu/ENCODE).

Evaluation of variables affecting chromatin peaks

Prior to the differential analyses described below, we
considered the effect of 37 variables that could impact
the quality of the ATAC-seq results for each sample.
These variables were collected from key features of the
ATAC-seq processing pipeline, as well as individual
sample characteristics such as case-control status, sex,
and age. For example, the metadata for each sample in-
cluded transposase batch, nuclei sorting date, mass,
mean GC percentage of sequenced reads, mean mapped
read length, alignment quality metrics, subject age at
death, sex, diagnosis, and postmortem interval (PMI).
Two subjects were missing PMI, therefore we used the R
package MICE [36] to impute missing values using the
classification and regression trees methodology.

Covariate selection

For differential peak analyses, selection of covariates for
adjustment was carefully tailored to each comparative
analysis to account for the variable number of peaks be-
tween groups and to minimize false positives in peak
calling. We performed a linear regression of all metadata
variables against the first 10 principal components (PCs)
of the TMM normalized peak quantification in an effort
to identify covariates to be utilized in the differential ex-
pression analyses. In an iterative process, we selected
one variable (preferentially a variable directly related to
the ATAC-seq experiment, explaining one of the largest
proportions of variance and with few parameters),
regressed its effect on the peak quantifications and per-
formed a new principal component analysis independent
of the selected variable(s). We repeated this procedure
until there were no more Bonferroni significant (q <
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0.05) variables associated with the peak PCs. For the
comparison of neuronal and non-neuronal nuclei, we se-
lected the following variables for our differential chro-
matin analysis: NRF, number of nuclei, normalized peak
calls, nuclei sort date, alignment percentage, passing
base pairs, age, and donor. For the comparison of LOAD
vs. control neuronal nuclei, we selected normalized peak
calls, alignment percentage, nuclei sort date, and number
of nuclei as covariates. For the comparison of LOAD vs.
control non-neuronal nuclei, we included the number of
nuclei, NRF, nuclei sort date, and alignment percentage
as covariates in the differential chromatin analysis.
When performing a sex-stratified analysis of LOAD vs.
control samples in the NeuN+ nuclei, we selected align-
ment percentage in the female-only subset and nuclei
sort date in the male-only subset. Finally, in the sex-
stratified differential chromatin analysis of LOAD vs.
control NeuN- nuclei, we included normalized peak calls
as a covariate in the female-only subset, and normalized
peak calls and percent GC content as covariates in the
male-only subset. In the supplemented comparison of
LOAD vs. control NeuN- nuclei in females only (nine
additional non-neuronal samples), percent GC content
was included as a covariate.

Differential chromatin accessibility analyses

Differential ATAC-seq peaks were detected using EdgeR
package (version 3.22.3), which models counts using a
negative binomial distribution [37]. ATAC-seq reads
corresponding to chrX and chrY were excluded due to
unequal numbers of female and male donors. For each
comparison, counts of reads within peaks which were
merged from all of the replicates were extracted from
BigWig files and normalized by weighted trimmed mean
of M-values [38] (TMM). Quasi-likelihood F-tests (QLF)
was performed to determine differential sites at cut off
adjusted p values < 0.05. As an approximate error model,
QLF works more robustly and gives more reliable Type I
error rate control than the other options, especially
when there are smaller numbers of replicates (EdgeR
User Guides, Bioconductor package vignettes). Three
levels of case-to-control chromatin accessibility compari-
sons were performed (Fig. 1g): Level_I: 40 NeuN- vs 40
NeuN+, all samples are from matched donors; Level 2:
(A) NeuN-, 19 cases vs 21 controls (B) NeuN+, 19 cases
vs 21 controls; Level_3: (A) NeuN- females, 11 cases vs
11 controls; (B) NeuN- males 8 cases vs 10 controls; (C)
NeuN+ females, 11 cases vs 11 controls; and (D) NeuN+
males, 8 cases vs 10 controls. Since the number of fe-
male samples was less than that of male, we included 9
additional NeuN- datasets (those that did not have
matching NeuN+ data from the same donor but met QC
criteria) into Level 3 and processed an additional com-
parison: (E) NeuN- females,14 cases vs 13 control. For
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Fig. 1 (See legend on next page.)
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normal and 6 LOAD)

Fig. 1 Isolation of nuclei from frozen brain samples and analysis of ATAC-seq data. Human postmortem frontal cortex was dissociated, nuclei
were isolated and stained with the nuclear stain DAPI and a monoclonal NeuN antibody conjugated to PE. a Nuclei were first sorted based on
their forward and side scatter from all possible events (R1 gate). b Single nuclei were further sorted based on their size from the doublets or
larger clumps of nuclei (R2 gate). ¢ DAPI positive single cells were gated as either NeuN-PE positive (neurons, R3 gate) or NeuN-PE negative (glia,
R4 gate). d Post-sort data showing the purity of the separation between neuronal and non-neuronal nuclei. e Fluorescence image showing
unsorted nuclei stained for NeuN (red) and DAPI (blue). The scale bar represents 100um. f Proportion of neuronal nuclei from each sample. Error
bars show standard error of the mean. g Overview schematic of Levels 1, 2, 3, and 3b of differential analysis. Level 1T compares neuronal vs. non-
neuronal for 21 normal and 19 LOAD samples. Level 2 compares normal vs. LOAD for each neuronal and non-neuronal subpopulation. Level 3
compares LOAD samples separated by female and male. Level 3b is the same comparison done after adding 9 female non-neuronal samples (3

all these comparisons we included covariates (described
in “covariate selection”) in the EdgeR analysis with
model design as open chromatin accessibility ~ Disease
(LOAD state) + covariates. Importantly, for each analysis,
we remerged and recalled the chromatin peaks. Thus,
the separate analyses were not direct subsets of each
other.

Genomic distribution analysis

ATAC-seq peaks were categorized as promoters (tran-
scription start site to upstream 1 kb), 1st exon, intragenic
(excluding 1st exon), 5" UTR, 3" UTR, and intergenic,
based on human gene hgl9 NCBI RefSeq gene informa-
tion from the UCSC genome browser.

Gene ontology analysis

Differential open chromatin regions were characterized
by GREAT (v 3.0.0) (http://bejerano.stanford.edu/great/
public/html/), using the hgl9 genome as background re-
gions. Genes associated to open chromatin regions were
determined by default “basal plus extension” settings
(i.e., 5 kb upstream, 1kb downstream, plus distal up to
1000 kb).

Overlap with LOAD GWAS loci

The tag SNP for 25 LOAD loci were obtained from the
literature [7]. Genome coordinates +/- 100 kb surround-
ing each GWAS tag SNP were used to identify any dif-
ferential open chromatin region that mapped within the
region. Permutation analyses were performed by ran-
domly selecting the same numbers of sites from the
union set of ATAC-seq peak calls. For each comparison,
we performed 10,000 permutations to estimate the em-
pirical P-value.

Motif search

Transcription factor motif enrichments were evaluated
using HOMER [39] (v4.10.3) and MEME Suite [40]. For
each comparison, we used the centered 300 bp of open
chromatin regions as input, and the union peak calls as
background. GC matching was applied to the back-
ground peaks to ensure that this did not lead to spurious
results. We primarily used all peaks as the background,

but to check for accuracy, we also randomly selected
10,000 peaks as the background from all peaks. For this
analysis, we focused on the known motif search rather
than search for de novo motifs.

Differential expression analysis of ROSMAP data

Gene expression data from AMP-AD was obtained from
the Religious Orders Study and Memory and Aging Pro-
ject (ROSMAP) [41, 42]. This study includes RNA-seq
data from the dorsolateral prefrontal cortex of 724 sub-
jects [43, 44]. limma was used to perform the differential
analysis in R on normalized FPKM values obtained from
RNA-seq of ROSMARP bulk tissue samples. Samples with
cogdx of 1 (no cognitive impairment, n=201) and 4
(Alzheimer’s dementia and no other case of cognitive
impairment, n = 222) were included in the analysis.

Single-nuclei library preparation and sequencing
Libraries were prepared for snRNA-seq using the Chro-
mium Single Cell 3" Reagent Kits v3 (10X Genomics) ac-
cording to the manufacturer’s instructions. Nuclei were
diluted in nuclease-free water to a concentration of 1
million nuclei / ml in a final volume of 100 ul, and
transferred to an 8-strip tube on ice. Sixteen thousand
nuclei were added to the Master Mix for a targeted nu-
clei recovery of 10,000. Libraries were pooled onto a sin-
gle S1 flow cell, and sequenced using the Illumina
NovaSeq 6000 system to obtain paired-end 2 x 100 bp
reads. Sequencing saturations ranged from 59.3 to
81.2%.

snRNA-seq data analysis

CellRanger software version 3.1.0 (10X Genomics) was
used to demultiplex raw Illumina base call files into
FASTQ files. A pre-mRNA GTF file was generated with
the pre-built GRCh38 3.0.0 human reference using the
Linux utility awk, in order to be compatible with Cell-
Ranger and to include intronic reads from nuclear RNA
in UMI counts for each gene and barcode. The CellRan-
ger count pipeline was run to align reads to the pre-
mRNA GRCh38 reference and gene expression matrices
generated separately for each of the four samples were
merged together into a single matrix.
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For quality control and filtering, the quickPerCellQC
function from the R package scater v1.14.6 [45] was used
to identify low-quality cells based on QC metrics (UMI
count, number of genes detected, percentage of UMIs
that mapped to the mitochondrial genome). Cells in
which 229 or more genes were detected and less than
17.4% of UMIs mapped to the mitochondrial genome
were used in downstream analyses. Out of 21,262 nuclei
in the initial dataset 18,032 remained after filtering with
a median number of 2332 detected genes per nucleus.
The R package Seurat v3.1.1 standard workflow was
used for integration of multiple samples to combine the
four samples into a unique dataset [46]. Prior to integra-
tion, gene expression was normalized for each sample by
scaling by the total number of transcripts, multiplying by
10,000, and then log transforming (log-normalization).
We then identified the 2000 genes that were most vari-
able across each sample, controlling for the relationship
between mean expression and variance. Next, we identi-
fied anchor genes between pairs of samples using the
FindIntegrationAnchors function that were then passed
to the IntegrateData function to harmonize the four
samples.

We scaled the integrated dataset before running a
Principal Component Analysis (PCA). To distinguish
principal components (PCs) for further analysis, we used
the JackStraw method to determine statistically signifi-
cant PCs and found that up to 30 PCs were enriched in
genes with a PC score that was unlikely to have been ob-
served by chance. We then utilized the shared nearest
neighbor (SNN) modularity optimization-based cluster-
ing algorithm implemented in Seurat for identifying
clusters of cells. This was performed using the Find-
Neighbors function with 30 PCs, followed by the
FindClusters function with the Louvain algorithm using
a 0.4 resolution. This allowed us to assign cells into a
total of 21 clusters. We applied the uniform manifold
approximation and projection (UMAP) method on the
cell loadings of the previously selected 30 PCs to
visualize the cells in two dimensions and to separate nu-
clei into clusters.

Differential expression to identify cluster markers that
are conserved between the samples was performed using
the Seurat function FindConservedMarkers for each clus-
ter on the normalized gene expression before integra-
tion. R package SingleR v1.0.1 [47] was used to annotate
cell types based on correlation profiles with 713 bulk
microarray samples from the Human Primary Cell Atlas
[48] (HPCA) as reference expression data. Four major
cell types were detected by the SingleR method using
HPCA: macrophages, astrocytes, neurons, and endothe-
lial cells. Because of the specific expression of microglial
markers PTPRC and CSFIR in the macrophage cluster,
as well as the differences in biological systems used in
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the HPCA reference, we manually refined the HPCA an-
notation of this specific cluster to microglia. Identifica-
tion of neuronal vs. non-neuronal clusters for some
differential expression analyses was performed by deter-
mining the proportion of cells expressing the neuronal
marker NeuN/RBFOX3. Clusters with more than 50% of
cells expressing NeuN/RBFOX3 were defined as neur-
onal clusters. Control samples showed an average of
2417 (SD 169) neuronal and 2319 (SD 1149) non-
neuronal nuclei, whereas LOAD samples showed 1329
(SD 294) neuronal and 2952 (SD 1783) non-neuronal
nuclei. NeuN neuronal clusters and neuronal clusters
identified by SingleR using the HPCA reference were
very consistent with only one additional cluster in NeuN
neuronal clusters (out of a total of 16 clusters). Differen-
tial expression analyses between female LOAD nuclei
and control nuclei within specific groups of nuclei were
performed using the Wilcoxon Rank Sum test as imple-
mented in the FindMarkers function in the Seurat pack-
age. ‘min.pct’ and ‘logfc threshold’ arguments were set to
0 to allow for the testing of a majority of genes in each
analysis.

Results

Study sample and quality control analyses

Nuclei isolated from archived frozen temporal cortex of
51 individuals with LOAD (n =26) or controls (1 =25)
(Supplementary Table 1) were stained and sorted using
a PE-conjugated monoclonal NeuN antibody (Fig. 1a-d).
Staining of pre-sorted nuclei with nuclear membrane
markers was confirmed by immunofluorescence (Fig.
le). We observed a smaller proportion of sorted neur-
onal (NeuN+) nuclei from total isolated nuclei in the se-
vere LOAD cases (Table 1, Fig. 1f), as expected due to
neuronal cell loss and gliosis, hallmarks of LOAD patho-
logical progression [49, 50]. We next performed ATAC-
seq using the NeuN+ and NeuN- sorted nuclei popula-
tions. A total of 90 neuronal and non-neuronal datasets
passed quality control criteria (see Methods), which were
derived from 40 individuals (19 LOAD cases and 21 con-
trols) that had matched neuronal and non-neuronal
data, and an additional 9 individuals (3 LOAD cases and
6 controls) that had only non-neuronal data. The final
cohort of 40 consisted of 22 males and 18 females with
similar post-mortem intervals (PMI); all donors were
Caucasians and homozygous for APOE e3 (Supplemen-
tary Table 2). Subsequent analyses compared different
sub-groups (Fig. 1g). Correlations of all potential numer-
ical covariates showed expected patterns of co-linearity
(Supplementary Fig. 1). The samples displayed a range
of QC metrics, with some samples displaying a higher
signal to noise (Supplementary Table 1). Repeated ex-
periments on a subset of samples demonstrated that sig-
nal to noise was reproducible and thus a sample-specific
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characteristic (Supplementary Table 1). In addition to
randomizing sample preparation (see Methods), we
found that no metadata variables were significantly asso-
ciated with case-control status (Supplementary Fig. 2),
indicating an absence of batch effects.

Differential analysis of ATAC-seq data between neuronal
and non-neuronal nuclei
To demonstrate that we can robustly identify chromatin ac-
cessibility differences between major cell types of the brain,
we first compared the ATAC-seq profiles between neuronal
and non-neuronal nuclei groups from the entire study sam-
ple (Level 1, Fig. 1g). PCA of all samples showed that 37.5%
of the total variance was explained by the cell type (neuronal
versus non-neuronal, Supplementary Fig. 3, Supplementary
Fig. 11). Performing quantitative differential chromatin ac-
cessibility analysis using EdgeR (FDR q<0.05), we found
that 87,570 regions were more accessible in the neuronal
population, 83,171 regions were more accessible in the non-
neuronal population, and 54,484 regions were not detected
as differential (Fig. 2a, Supplementary Table 10). Representa-
tive screenshots show differential ATAC-seq peaks around
genes known to be expressed specifically in neuronal (Fig.
2b) or non-neuronal (Fig. 2c) cell types. A higher percentage
of sites more accessible in non-neuronal population mapped
to promoters, which could be explained by the more distal
regulation of neuronal cell types or the greater diversity and
heterogeneity of the cell types composing the non-neuronal
population (Supplementary Fig. 4). Using GREAT gene
ontology analysis [51], neuronal-specific regions were
enriched with genes associated with neuronal function,
while non-neuronal specific regions were enriched with
genes implicated in glial function (Supplementary Table 3).
Motif analysis for regions with increased chromatin
accessibility in neuronal nuclei showed enrichment for
the transcription factor recognition sites of Early Growth
Response 2 (EGR2), Regulatory Factor X1 (RFX1), and
Myocyte Enhancer Factor 2C (MEF2C) [52-54], while
motif analysis for regions with increased chromatin ac-
cessibility in non-neuronal nuclei showed enrichment
for the SRY-related HMG-box (SOX) transcription fac-
tor family [55] (Supplementary Table 4). When com-
pared to a previous NeuN sorted-nuclei ATAC-seq
study [56] using a smaller number (n=8) of healthy
brain samples, we found a substantial degree of overlap
(Supplementary Fig. 5a) with similar peak length distri-
bution (Supplementary Fig. 5b). However, the 5x larger
number of samples used in our study identified > 80,000
additional significantly differential chromatin sites.

Comparison of sorted nuclei vs. bulk brain tissue
homogenate

To our knowledge, no study has directly compared chro-
matin accessibility differences between bulk brain tissue,
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neuronal, and non-neuronal fractions. Bulk brain
ATAC-seq data was generated using pulverized frozen
whole tissue homogenate samples from six individuals
for whom high-quality ATAC-seq data was collected
from neuronal and non-neuronal populations (Supple-
mentary Table 5). Binary peak overlap analysis shows
that while there are some regions that are only accessible
in bulk tissue, a substantially larger number of sites are
uniquely detected in the nuclei populations of neuronal
and non-neuronal only (Fig. 2d). This observation justi-
fies the performance of ATAC-seq analysis by brain cell-
type to reduce cellular heterogeneity as it allows the
identification of more cell type specific signals. Quantita-
tive differential chromatin accessibility (EdgeR compari-
sons (Supplementary Fig. 6) and GO annotations
(Supplementary Table 6-8) showed that chromatin ac-
cessibility sites specifically identified in bulk tissue, neur-
onal and non-neuronal populations displayed many
biologically relevant pathways.

Identification of LOAD-associated differences in
chromatin accessibility

To determine the association of LOAD status with
changes in chromatin accessibility, we performed differ-
ential ATAC-seq analysis of 19 LOAD compared to 21
healthy controls stratified by brain cell-type (neuronal
and non-neuronal only populations; Level 2, Fig. 1g).
The comparison using the neuronal nuclei data resulted
in 211 neuronal chromatin differences (FDR q < 0.05)
between LOAD and control (Fig. 3a, Supplementary
Table 11), while the analysis of the non-neuronal nuclei
detected no differential chromatin between LOAD and
control (Fig. 3b). Motif analysis using the 141 sites that
showed decreased chromatin accessibility in LOAD
neuronal nuclei were enriched for transcription factor
motifs including Wilms Tumor protein (WT1), Early
Growth Response 1 (Egrl), Retinoic acid receptor
gamma (RARg), and Kruppel like factor 14 (KLF14) (Fig.
3c) that have been reported relevant to brain function
[57-60]. No significant motif enrichment was detected
from 70 sites (FDR q<0.05) with increased chromatin
accessibility in neuronal LOAD samples.

Identification of sex-dependent chromatin accessibility
differences between LOAD and control samples

Since sex has an effect on LOAD onset and progression
[61], we performed a sex-stratified differential analysis of
LOAD compared to control (Level 3, Fig. 1g) to examine
whether the effect of sex on LOAD risk is mediated, at
least in part, by chromatin remodeling. The differential
analysis of the neuronal groups did not yield significant
differences between LOAD and normal when stratified by
sex for either females or males (FDR q > 0.05) (Fig. 4a-b).
Analysis of the non-neuronal nuclei identified 24
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(See figure on previous page.)

Fig. 2 Level 1 comparison of ATAC-seq data from neuronal vs non-neuronal nuclei. a MA plot showing differential ATAC-seq sites between
neuronal (blue) vs. non-neuronal regions (red). Red dots represent ATAC-seq peaks that are significantly different between groups (FDR g < 0.05).
b ATAC-seq data around non-neuronal-specific genes SLC25A18 (upper panel) and ACSBGT (lower panel). Boxes highlight peaks that are more
accessible in neuronal (red) or non-neuronal (blue) nuclei. ¢ ATAC-seq data around neuron-specific genes MEF2C (upper panel) and SLA (lower
panel). All regions indicate hg19 coordinates. d Venn diagram of ATAC-seq peaks detected in whole tissue, sorted neuron and sorted non-neuron

nuclei from 6 donor-matching samples

chromatin accessibility differences in female LOAD com-
pared to control (Fig. 4c, Supplementary Table 12), while
no significant differences were identified when the analysis
was performed in males (Fig. 4d). To further investigate
this trend, we increased the sample size with 9 additional
non-neuronal samples (6 female controls and 3 female
LOAD cases). Differential analysis using ATAC-seq data
from the larger female non-neuronal dataset resulted in
842 differential sites between LOAD and control (FDR
q < 0.05) (Fig. 4e, Supplementary Table 13).

Comparison of these results with the LOAD associated
chromatin accessibility sites obtained from the differen-
tial analysis of female neuronal nuclei showed that while
there are differences detected in both female neuronal
and glial cells in LOAD cases versus controls, we de-
tected larger effect sizes in the female glia cells (Supple-
mentary Fig. 12a). In addition, several differential

regions identified in female non-neuronal nuclei were
also observed in male non-neuronal nuclei with similar
trends, however, these did not reach statistical signifi-
cance (Supplementary Fig. 12b). Nonetheless, these asso-
ciations in the female group showed a stronger effect
size (Supplementary Fig. 12b).

We performed motif enrichment using the 203 sites
that were more accessible in non-neuronal female
LOAD and found significantly enriched motifs for the
SOX family (Fig. 4f). The analysis of 639 sites that dis-
played decreased accessibility in non-neuronal female
LOAD was enriched for transcription factors known to
be highly associated with glia or neuron functions, such
as RONIN, SOX9, YY1 and ELK4 [62-65] (Fig. 4f).

To determine whether binding of transcription fac-
tors identified in female non-neuronal cells (Level 3,
Fig. 1g) has downstream effects on expression of
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Fig. 3 Level 2 comparison of ATAC-seq data between LOAD cases and controls. MA plots of differential chromatin sites for a neuronal and b
non-neuronal nuclei. Red dots represent differential ATAC-seq sites with FDR g < 0.05. ¢ Motifs that are enriched in neuronal ATAC-seq sites that
are less accessible in LOAD samples. Size of red dots were increased for visibility
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target genes, we used the publicly available ROSMAP
bulk RNA-seq data to perform differential expression
analyses of those genes for LOAD vs. Normal. We
found that several genes exhibited changes in the ex-
pected direction, including ZACI1 (PLAGLI), YY1,
and SOX2 (Supplementary Table 15). This provides
further mechanistic insights into gene dysregulation
underlying LOAD pathogenesis in females. Last, we
also used the chromatin accessibility differential sites

identified in female non-neuronal LOAD (Level 3)
for GO analysis and found pathways involved in im-

mune response and myelination (Supplementary
Table 9).

Overlap of LOAD-specific differential chromatin
accessibility sites with LOAD GWAS regions

To determine the relationship of the LOAD-specific
chromatin accessibility sites we compared these data
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with LOAD GWAS regions [7]. We defined LOAD
GWAS regions by anchoring on the top 25 associated
SNPs +/-100kb, and cataloged LOAD-GWAS regions
of 200kb each. Importantly, we were comparing gen-
omic regions of chromatin accessibility to the GWAS re-
gions, not chromatin QTLs, to GWAS loci. Of the 211
LOAD-specific differential chromatin accessibility sites
in neuronal samples (FDR q < 0.05, Fig. 3a), we identified
five sites that overlap four of the 25 LOAD GWAS re-
gions (Table 2). We show representative examples of
overlapping LOAD-specific differential chromatin acces-
sibility sites surrounding the PTK2B and CLU GWAS
loci (Fig. 5a, Supplementary Fig. 7). Using permutation
testing, we did not detect a significant enrichment with
LOAD GWAS regions compared to regions selected at
random (Supplementary Fig. 8a-b).

Of the 842 differential sites in non-neuronal female
LOAD (FDR q < 0.05, Fig. 4e), we detected nine differen-
tial sites that overlap seven of the 25 LOAD-GWAS re-
gions (Table 2). Using permutation analysis (see
Methods), we found significant enrichment in the
amount of overlap with sites less accessible in non-
neuronal female LOAD (P < 0.05, Supplementary Fig. 8c-
d). Representative examples of differential chromatin ac-
cessibility sites between LOAD cases and controls
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overlapping representative LOAD-GWAS regions are
shown for the loci APOE (Fig. 5b, Supplementary
Fig. 7b), and IQCK (Fig. 5¢c, Supplementary Fig. 7c).
While differences around the APOE and IQCK locus are
more pronounced in females, we also detect subtle dif-
ferences in the same direction in males (Fig. 5b-c, Sup-
plementary Fig. 7b-c). The identification of LOAD
differences in chromatin accessibility in the APOE re-
gion, suggests a possible regulatory mechanism inde-
pendent of the e4 allele effect at this locus.

Overlap of LOAD-specific differential chromatin
accessibility sites in female non-neurons with single
nuclei RNA-seq data

Next, we performed functional validation of key findings
from the chromatin accessibility differential sites in fe-
male LOAD non-neuronal cells that overlapped LOAD-
GWAS regions (Table 3, Supplementary Fig. 9). We fo-
cused the analysis on two representative LOAD differen-
tial chromatin accessibility sites in female LOAD non-
neuronal cells that overlapped LOAD-GWAS loci: (1)
LOAD more accessible sites surrounding the ECHDC3
locus (annotated by the proximate gene to the associated
SNP) and (2) LOAD less accessible sites surrounding the
ABCA7 locus. The loci were defined by anchoring on

Table 2 Neuron control vs LOAD differential peaks overlapped with 25 LOAD-GWAS regions as well as female glia control vs LOAD
differential peaks overlapped with 25 LOAD-GWAS regions. For each panel, upper: more open in LOAD; lower: less open in LOAD

Neuron control vs. LOAD differential peaks overlapped with 25 LOAD-GWAS regions

Differential sites with FDR < 0.05

Female glia control vs. LOAD differential peaks overlapped with 25 LOAD-GWAS regions

Differential sites with FDR < 0.05

Peak call

More accessible in LOAD
chr6:32551592-32552707
chré:32489394-32490069
Less accessible in LOAD
chr20:54994099-54994641
chr8:27209401-27210247
chr8:27563212-27563671

Peak call

More accessible in LOAD
chr10:11784165-11784736
Less accessible in LOAD
chr14:92966426-92967442
chr16:19894588-19895301
chr17:61627113-61628372
chr19:1101756-1102160
chr19:45416036-45416558
chr19:45428555-45429362
chr19:45454352-45455071
chr7:100025783-100028055

GWAS + 100 kb Gene SNP SNP Position
chr6:32475406-32675406 HLA-DRB1 Rs9271058 chr6:32575406
chr6:32475406-32675406 HLA-DRB1 Rs9271058 chr6:32575406
chr20:54897568-55097568 CASS4 Rs6024870 chr20:54997568
chr8:27119987-27319987 PTK2B Rs73223431 chr8:27219987
chr8:27367686-27567686 CLu Rs9331896 chr8:27467686
GWAS + 100 kb Gene SNP SNP Position
chr10:11620308-11820308 ECHDC3 Rs7920721 chr10:11720308
chr14:92832828-93032828  SLC24A4 Rs12881735 chr14:92932828
chr16:19708163-19908163 1QCK Rs7185636 chr16:19808163
chr17:61438148-61638148 ACE Rs138190086 chr17:61538148
chr19:956492-1156492 ABCA7 Rs3752246 chr19:1056492
chr19:45311941-45511941 APOE Rs429358 chr19:45411941
chr19:45311941-45511941 APOE Rs429358 chr19:45411941
chr19:45311941-45511941 APOE Rs429358 chr19:45411941
chr7:99991795-100191795 NYAPT (ZCWPW1) Rs12539172 chr7:100091795
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Fig. 5 Differential LOAD specific ATAC-seq peaks around LOAD-GWAS regions. Screenshots of ATAC-seq data around a PTK2B, CLU, b APOE, and ¢
IQCK loci. Box plots show ATAC-seq read counts for individual ATAC-seq peaks (blue frames highlight significant differential peaks for cases vs.
controls, gray frames show control peaks that are not differential between cases and controls). Box plots are color coded for non-neuronal (blue)
neuronal (red), female (no fill), and male (gray fill). All tracks show hg19 coordinates and all y-axes on tracks range from 0 to 250. For box plots,
the line within each box represents the median, and the top and bottom borders of the box represent the 25th and 75th percentiles,
respectively. The top and bottom whiskers of the box plots represent the 75th percentile plus 1.5 times the interquartile range and the 25th
percentile minus 1.5 times the interquartile range, respectively

Table 3 Differential snRNA-seq expression from level 3 female glia controls vs cases that are within 500 kb of LOAD-GWAS SNPs at
loci found to be more accessible (rs7920721) or less accessible (rs3752246) in LOAD by ATAC-seq

SNP (coordinates, proximate Genes NeuN- non-neuronal HPCA-annotated astrocytes HPCA-annotated microglia
gene) Mean log Adjusted p Mean log Adjusted p Mean log Adjusted p
(FC) value (FC) value (FC) value
rs7920721 (chr10:11,678,309, CELF2 0.087 1 -0.090 1 047 490x107'¢
ECHDC3) USP6NL  0.12 032 -0.022 1 0.29 1
ECHDC3 0067 1 0016 1 031 1
UPF2 -034 0.00042 -031 1 -048 1
DHTKD1 =016 1 -0.23 1 0011 1
SEC6TA2 0028 1 -0.028 1 0.15 1
NUDT5  -0.032 1 -0.097 1 021 1
rs3752246 (chr19:1,056,493, BSG 0.035 1 0.10 0.32 —011 1
ABCA7) POLRMT ~ —0.047 1 -0030 1 0061 1
FSTL3 -0.12 0.065 —0.13 1 0.047 1
PALM -0.071 1 0.010 1 —025 1
PTBPT  —0.034 1 -0053 1 0.065 1
AZUI -0012 1 -0015 1 -0039 1
MED16  —0036 1 -0.051 1 =019 1
ARID3A 0.089 0.97 0.047 1 0.12 1
TMEMZ259 0.050 1 0.089 1 -0.11 1
ABCA7  -0013 1 -0022 1 0075 1
STK11 —0.024 1 —0.041 1 —0.13 1
CBARP 0.013 1 0.017 1 0.026 1
ATP5FID  0.040 1 0.1 1 —0032 1
MIDN 0.042 1 —0073 1 0.14 1
CRP =071 1.52x107%7  -080 127x107% 051 1
Cl9orf24  0.033 1 0.014 1 0.12 1
NDUFS7  0.083 0.016 0.11 0.0014 —0014 1
GAMT -0.10 T —0.065 1 —0.28 1
RPS15 —0.14 1 —0.19 0.66 0.088 1
APC2 0027 1 0022 1 -0.14 1
PCSK4 —0.033 T —0.025 1 -0.10 1

Negative mean log (FC) values indicate down-regulation in LOAD and positive values indicate up-regulation in LOAD. Significant adjusted p values are bolded and
mean log (FC) values consistent with ATAC-seq data are underlined. FC =fold change. Genes that were not detected or that had mean log (FC) values below 0.01

for any of the three groups were excluded from the table. Refer to detailed genomic structure presented in Supplemental Fig. 9



Barrera et al. Molecular Neurodegeneration (2021) 16:58

the associated SNPs +/- 500 kb, rs7920721 (ECHDC3)
and rs3752246 (ABCA7) using the UCSC Genome
Browser [66] (http://genome.ucsc.edu/) GRCh38/hg38
assembly released December 2013 (Table 3, Supplemen-
tary Fig. 9). Single-nuclei (sn)RNA-seq data was col-
lected from female brains using a small subset group of
two LOAD and two control (Supplementary Table 2,
marked with *’), and differential expression analysis of
female LOAD nuclei compared to control nuclei was
performed for all genes mapped with these regions in
three cell-type specific groups: 1) NeuN- non-neuronal,
2) Human Primary Cell Atlas (HPCA)-annotated astro-
cyte, and 3) HPCA-annotated microglia. Pseudogenes,
RNA genes, and novel transcripts were excluded from
the analysis. Out of 54 total genes within 1 Mb of the
two SNPs, 8 within the ECHDC3 locus and 46 within
the ABCA?7 locus (Supplementary Fig. 9), many were up-
or down- regulated as predicted by chromatin accessibil-
ity profiles (i.e. increased chromatin accessibility overlap-
ping promoters and enhancers was associated with
upregulation and vice versa). Overall 28 (51.9%), 23
(42.6%), and 24 (44.4%) genes of the NeuN-, astrocyte,
and microglia clusters, respectively, showed differential
expression with trends corresponding to the changes in
chromatin accessibility. Of those genes, some showed
nominal significance (6 (21.4%) for NeuN-, 3 (13.0%) for
astrocyte, and 5 (20.8%) for microglia clusters), but did
not reach adjusted statistical significance, while other
trends did not reach nominal significance. This could be
explained by the small sample size and/or number of
cells in the clusters. Furthermore, we examined the
consistency between our dataset and a similar recently
reported dataset [28]. To address this question we con-
ducted differential expression analysis for HPCA-
annotated neurons, astrocytes, and microglia and com-
pared the results for the top 15 significant genes, i.e. 5
from each cell type identified by the previous study [28].
We found that out of these 15 genes, our results show
the same directionality for 13 genes, 10 of which also
had significant adjusted p-values (Supplementary
Table 14), providing further validation of our findings.

Table 3 catalogues the genes surrounding the ECHD
C3 and ABCA7 loci, excluding 26 genes that were not
detected or had low fold change values. Out of seven
genes positioned within the 1 Mb region of the LOAD
associated ECHDC3 SNP, we found that CELF2 was sig-
nificantly upregulated in LOAD HPCA-annotated
microglia clusters (mean log (fold change)=0.47, ad-
justed p =4.90 x 10~ '¢, Table 3). In addition, out of 21
genes mapped within the 1 Mb region of the LOAD as-
sociated ABCA7 SNP, CIRBP was significantly downreg-
ulated in LOAD NeuN- non-neuronal clusters (mean
log (fold change)=-0.71, adjusted p=1.52x10"",
Table 3) and.
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HPCA-annotated astrocyte clusters (mean log (fold
change) = - 0.80, adjusted p=127x10"*2, Table 3).
These results demonstrated that alteration in chromatin
accessibility in LOAD-GWAS loci correlates with
changes in gene expression. Furthermore, the results
suggested that the target genes within LOAD-GWAS
loci affected by LOAD specific changes in chromatin
state may not be simply interpreted as the most proxim-
ate gene to the associated SNP.

Our pilot analysis to identify the intersection of
LOAD- and glia- specific ATAC-seq sites and snRNA-
seq patterns discovered novel LOAD regulatory ele-
ments that lead to gene expression changes in LOAD.
However, this pilot analysis was limited by the small
number of samples (2 cases and 2 control) and therefore
validation of the findings warrant further analysis using
a larger RNA-seq dataset from LOAD patients and con-
trols. Furthermore, intersecting these data sets provided
a functional validation for the top significant findings
from the ATAC-seq experiments showing sex-
dependent LOAD-specific open and closed chromatin
accessibility sites in non-neuronal cells. Collectively,
these results suggest that integrating brain cell-type spe-
cific ‘omics data is a powerful mechanistic strategy to
discover regulatory elements that impact expression of
disease genes in a cell-type specific manner.

Discussion

Decoding the genetic and genomic mechanisms of
LOAD is a major challenge in the post-GWAS era, since
the majority of the LOAD associated SNPs are in non-
coding regions [1-7]. Noncoding disease-associated loci
have been shown to be enriched for regulatory elements
in tissues and cells relevant to the disease [56, 67—69].
Thus, post-GWAS research requires an in-depth
characterization of cell-type specific DNA regulatory ele-
ments. Mapping chromatin accessibility has been widely
used to identify the location of active DNA regulatory el-
ements, including promoters, enhancers, and insulators
[70-73]. We performed the first systematic interrogation
of the chromatin accessibility landscape in neuronal and
non-neuronal sorted nuclei from LOAD and healthy
brains.

To our knowledge, this study represents the first and
the most comprehensive dataset to date of chromatin ac-
cessibility in LOAD brains and matched controls. Fur-
thermore, this study was performed with brain cell-type
specific resolution, i.e. neuronal and non-neuronal cells.
The study has four major findings for the field of LOAD
epigenetics. First, we have generated a map of LOAD-
associated cell-type specific chromatin accessibility sites.
Second, we provide a catalogue of female-specific
disease-associated chromatin accessibility sites in non-
neuronal cells. Third, we suggest a non-coding
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regulatory mechanism, namely chromatin accessibility,
by which ~25% of LOAD-GWAS loci may exert their
effect. Fourth, we have demonstrated that LOAD associ-
ated changes in chromatin accessibility can result in
gene dysregulation through their overlap with the tran-
scriptome profile of LOAD-GWAS loci. Overall, these
results suggest that the cis interactions between regula-
tory elements and key genes contribute, at least in part,
to the development and/or progression of LOAD. Of
note, 87% of the differentially accessible chromatin peaks
in the female NeuN- analysis and 92% of the differen-
tially accessible chromatin peaks in the NeuN+ analysis
fall within known regions of topologically associating do-
mains (TADs) from fetal brain [74]. This suggests that
chromatin regions associated with risk for LOAD belong
to highly interacting regulatory domains. Furthermore,
several LOAD loci may exert their pathogenic effects in
a cell-type specific manner while others act in multiple
cell types to drive LOAD pathogenesis. Alternatively,
these cell-type specific and common changes in chroma-
tin structure may represent secondary effects as conse-
quences of disease-related processes such as
neurodegeneration and gliosis.

A growing number of epigenome-wide association
studies (EWAS) in LOAD have profiled DNA methyla-
tion, hydroxymethylation, and histone acetylation marks
(H4K16ac), and assessed associations with LOAD risk
and other related endophenotypes including the burden
of pathology [17-24]. These studies have been a power-
ful approach to validate known LOAD loci, discover new
candidate genes, and identify disease-related pathways
[17-24]. However, the majority of the LOAD EWAS
datasets were generated using bulk brain tissues, and the
heterogeneous cell-type populations of brain tissue sam-
ples pose technical and biological limitations. Our re-
sults showed that a substantially larger number of
ATAC-seq sites are uniquely detected in the neuronal
and non-neuronal cells, compared to bulk tissues ob-
tained from the same donors. This observation demon-
strates the importance of cell-type specific epigenomic
studies relative to bulk tissues, as it reduces cellular het-
erogeneity allowing the identification of more cell-type
specific signals. Collectively, our outcomes open a new
window for the exploration of the particular cell-types
that contribute to LOAD pathogenesis, and the genes
and pathways that mediate the cell-type specific patho-
genic effects.

These data advance the mechanistic understanding of
LOAD, and moreover, uncover new candidate LOAD
loci. To date, in addition to this study only five others
(two transcriptome, two DNA-methylation, and one his-
tone acetylation) have compared genomic signatures
stratified by different cell types in the LOAD brain using
sorted- and single- nuclei based methodologies [27-29,
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70, 75]. Altogether, our and other studies demonstrated
the importance of applying these cell-type specific ap-
proaches in molecular analyses of brain tissues and high-
light the impact of transitioning into single-cell based
‘omics studies in LOAD functional genomic research. In
addition, we show that integrating our cell-type specific
ATAC-seq data with our scRNA-seq LOAD data cor-
roborate the interpretation of the results and provide
functional validation. By aligning the two datasets, we
identified LOAD-specific ~ female-dependent non-
neuronal regulatory elements around two differentially
expressed genes in LOAD glia cells. Moreover, analysis
of chromatin accessibility differential sites in female
LOAD non-neuronal cells that overlapped LOAD-
GWAS regions not only provided functional validation
and established the link between LOAD -GWAS
-ATAC-seq and -snRNA-seq but also demonstrated that
genes other than the most proximate to the associated
SNP may play a role in LOAD pathogenesis. These re-
sults exemplify the potential of integration of cell-type
specific datasets to validate known LOAD loci and also
to identify new candidate genes. In future studies, a lar-
ger sample size may allow conducting a chromatin ac-
cessibility QTL study to determine colocalization with
GWAS loci, and may also provide additional power to
detect differential sites in non-neuronal nuclei as in a re-
cent study [76]. In addition, investigating the relation-
ship between neuropathology severity and cell type-
specific chromatin accessibility signatures in a larger co-
hort will be crucial to understanding how gene regula-
tion in specific cell types is impacted by the progression
of the disease.

Several bulk tissue ChIP-seq studies have used func-
tional genomics and integrative systems biology ap-
proaches to infer cell types. Consistent with our findings,
these epigenomic studies strongly suggest that non-
neuronal cell types contribute to LOAD-specific histone
marks associated with active regulatory elements (pro-
moters and enhancers). It was reported that LOAD
GWAS loci were enriched in enhancer elements specific
to immune cells [77] and tangle-associated H3K9ac sig-
nals located in both promoters and enhancers were sig-
nificantly associated with modules classified as non-
neuronal [78]. Recently, two studies used FANS-sorted
nuclei followed by ChIP-seq and demonstrated that
microglia were the non-neuronal cell type contributing to
LOAD epigenomic signatures. Nott et al. found that
LOAD SNP heritability was most significant in microglial
enhancers [79], and Ramamurthy et al. showed that hyper-
acetylated peaks in microglia colocalize more with LOAD
SNPs than the histone acetylome of other cell types [75].
Collectively, ours and others’ studies point to non-
neuronal epigenomic dysregulation, likely microglial, as a
major contributing factor to LOAD pathogenesis.
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Sex is an important factor in LOAD etiology and there
are sex differences in disease risk, progression and clini-
copathological phenotypes [80]. Foremost, there is a sex-
dependent difference in LOAD prevalence and almost
two-thirds of LOAD patients are female [81]. Historic-
ally, it has been attributed to the longer average life ex-
pectancy in women [82], however, recent research
suggests that other factors, such as the sudden drop in
the level of sex hormones (estrogens) in women at
menopause, contribute to the differences in susceptibility
between males and females [61]. It was also reported
that women manifest faster disease progression and cog-
nitive decline, increased brain atrophy and pathological
burden largely driven by neurofibrillary tangles [61], and
a more advanced disease stage as indicated by CSF bio-
markers, especially higher concentrations of total tau
and phosphorylated tau. Although several conflicting re-
ports suggested opposite trends [83], the effect of sex on
LOAD has been widely accepted. Nonetheless, the mo-
lecular mechanisms underlying the role of sex as a risk
factor in LOAD are understudied. Our study provides
new insights into these gaps in knowledge showing sex-
dependent changes in chromatin structure between
LOAD and control brains. We identified hundreds of
LOAD differential chromatin accessibility sites specific
to females, which overlap nearly one-third of all LOAD
GWAS regions. Since the majority of differential chro-
matin accessibility sites do not overlap LOAD-GWAS
regions, these represent novel candidate LOAD loci.
Moreover, a female-specific effect on LOAD-associated
changes in chromatin accessibility appeared exclusively
in glial cells and resulted in nearly three-fold overrepre-
sentation of sites that were more closed in female LOAD
patient samples. However, we cannot rule out the possi-
bility that LOAD-associated changes in chromatin acces-
sibility also occur in glia from male LOAD patients, but
because of the plausible much smaller effect size in
males, we could be underpowered to detect significant
associations in our male cohort. These results warrant
further investigation to determine the effects of sex-
dependent chromatin remodeling on dysregulation of
gene expression in the context of LOAD. In this respect,
the recent scRNA-seq study [28] also reported sex-
dependent LOAD effects and specifically observed a sex-
specific differential transcriptional response to LOAD
pathology, enrichment of females cells in LOAD-
associated cell subpopulation, and higher expression in
females for the marker genes of LOAD-associated cellu-
lar subpopulations [28]. Future integration of diverse
‘omics datasets stratified by sex will decipher the under-
pinning mechanisms of sex differences in LOAD by es-
tablishing the cross interactions between sex-dependent
chromatin structure and function, transcriptome and
LOAD phenotypic outcomes.
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One of the loci that showed sex-dependent effects in
our study is the APOE linkage disequilibrium (LD) re-
gion. The e4 allele of the APOE gene is the first identi-
fied, most highly replicated, and the strongest genetic
risk factor for LOAD ([84, 85]. Furthermore, LOAD
GWAS have confirmed strong associations with the
APOE LD genomic region, and no other LOAD-
association remotely approached the same level of sig-
nificance [1, 3, 86]. Interestingly, female carriers of
APOE e4 have an increased risk of LOAD versus male
and the adverse effect of APOE e4 on LOAD biomarkers
was generally stronger in women versus men [87-92].
Overall the APOE LD region displayed more open chro-
matin in glia versus neurons as expected since this gene
is much more highly expressed in glia. Interestingly, we
found decreased chromatin accessibility at multiple sites
in female LOAD glia across the APOE region. This result
provides molecular clues to the observations that APOE
e4 allele confers a greater risk for LOAD in women than
in men [87-91]. In addition, significant downregulation
of APOE in astrocytes from LOAD brains, although not
sex-dependent, was reported by scRNA-seq analysis [28,
29]. This evidence is consistent with the trend we found
of more closed chromatin in LOAD samples, providing
functional validation to our result ENREF 28 [28]. In
summary, we proposed molecular insights based on
chromatin structure that may explain, at least in part,
some aspects related to the role of APOE in LOAD.

In conclusion, this LOAD genomic research pioneers the
approach of brain cell-type specific chromatin accessibility
profiling and lays the foundation for additional sorted- and
single- nuclei ‘omics analyses in LOAD. Our outcomes
warrant further investigations using a larger sample size to
enhance the discovery smaller LOAD-associated effects on
chromatin accessibility and to allow the utilization of a sin-
gle peakset and set of covariates to perform multiple test-
ing. Future and ongoing studies using even more advanced
single-cell technologies will generate complementary ‘omics
datasets with finer cell-type resolution from larger well-
characterized LOAD cohorts. Data sharing via publicly
available portals, such as Accelerating Medicines
Partnership-Alzheimer’s Disease (AMP-AD), will facilitate
integrative single-cells ‘omics towards moving forward our
understanding of the underpinning genetic drivers and mo-
lecular mechanisms of LOAD.

Conclusions

This study shows that LOAD-associated changes in
chromatin accessibility in the brain occur on a cell type-
specific level and may explain up to 25% of GWAS loci
conferring risk for LOAD. We found that changes in ac-
cessibility in non-neuronal cells were sex-dependent and
specific to female samples, thus providing a plausible
molecular basis for the increased risk for and accelerated
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progression of LOAD in females. We also identified cor-
relations between LOAD-associated accessibility changes
and dysregulation of gene expression within the same
cell type. Lastly, we provide evidence suggesting that in
some LOAD loci the precise disease-causing gene is not
merely the nearest gene to LOAD SNPs.
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