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Unraveling protein dynamics to understand 
the brain – the next molecular frontier
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Abstract 

The technological revolution to measure global gene expression at the single-cell level is currently transforming our 
knowledge of the brain and neurological diseases, leading from a basic understanding of genetic regulators and risk 
factors to one of more complex gene interactions and biological pathways. Looking ahead, our next challenge will 
be the reliable measurement and understanding of proteins. We describe in this review how to apply new, powerful 
methods of protein labeling, tracking, and detection. Recent developments of these methods now enable research‑
ers to uncover protein mechanisms in vivo that may previously have only been hypothesized. These methods are 
also useful for discovering new biology because how proteins regulate systemic interactions is not well understood 
in most cases, such as how they travel through the bloodstream to distal targets or cross the blood–brain barrier. 
Genetic sequencing of DNA and RNA have enabled many great discoveries in the past 20 years, and now, the protein 
methods described here are creating a more complete picture of how cells to whole organisms function. It is likely 
that these developments will generate another transformation in biomedical research and our understanding of the 
brain and will ultimately allow for patient-specific medicine on a protein level.
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Background
Proteins play the most active roles in cellular function, 
yet technologies to study molecules at the DNA and 
RNA level have developed at a much faster pace com-
pared to current methods available for studying pro-
teins [1]. This limitation has led to slow understanding 
of cellular function in the contexts of homeostasis, dis-
ease, and dysfunction. Over the past decade, antibody/
aptamer detection methods and mass spectrometry 
have emerged as the primary tools driving the detec-
tion of proteins on a cellular and tissue level [2]. As 
emerging biological questions increasingly require an 
understanding of intercellular, inter-organ, and systemic 

interactions, the need to accurately track the movement 
of proteins and understand their effects across tissues 
and organs becomes essential. Blood plasma contains 
proteins secreted from all tissues, even those that are 
difficult to access, such as the brain, and thus provides a 
rich source of biomarkers useful for determining patient 
health and potentially even organ-specific information. 
For example, a blood test for tau combined with two 
short cognitive tests and genotyping for Alzheimer’s dis-
ease can now predict mild cognitive impairment with 
approximately 90% accuracy [3].

Protein tracking is useful for understanding how pro-
teins secreted into the bloodstream can affect other tis-
sues exposed to them through the vasculature [4]. The 
brain appears to be meaningfully affected by proteins 
secreted from peripheral tissues into the bloodstream, 
despite the blood–brain barrier (BBB) traditionally 
being thought of as highly impermeable to proteins or 
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even small peptides [5]. For example by using radiotrac-
ers, neurotrophins such as BDNF and NGF were shown 
to cross the BBB, likely due to specific transport systems 
for these proteins [6, 7]. During aging and neurodegen-
erative disease, the BBB exhibits altered transport prop-
erties facilitating increased non-specific uptake into the 
brain of proteins including IgG, fibrinogen, and thrombin 
[5, 8]. The ability to detect protein transport into differ-
ent brain regions under various pathological conditions 
is crucial for understanding the influence of plasma pro-
teins on brain health and neurodegeneration.

Another example of the need for protein tracking is 
intercellular communication between the same or dif-
ferent cell types within a single tissue. Proteins mediate 
intricate signaling pathways between cells to coordinate 
orchestrated responses, such as with immune cell infil-
tration or responses to bacterial/viral infection [9]. The 
BBB itself is composed of endothelial cells, astrocytes, 
and smooth muscle cells that each secrete proteins that 
are critical for communication and maintenance of this 
layer [10–13]. In disease contexts, proteins may become 
mislocalized or dysregulated, affecting cell signaling and 
other important biological processes [14]. Thus, tracking 
proteins is useful for evaluating the state of a cell or cell 
system and may uncover novel opportunities for thera-
peutic development.

Recently, more tools have been developed to label and 
track specific proteins or proteomes for disease and BBB 
model systems. These methods are still under develop-
ment and often require overcoming technical hurdles to 
be used. Therefore, we will describe here how these tools 
can be practically used to explore important aspects of 
proteins in biology, offering an overview of capabilities 
with current and upcoming technologies. We will mainly 
discuss the use of these methods in the context of BBB 
transport as a particularly interesting barrier to protein 
movement, but these tools may be applied in many other 
biological contexts, often even more easily. Some of these 
tools may be used in humans either now or in the future 
to diagnose disease or directly understand human biol-
ogy, but perturbing entire proteomes may have unfore-
seen consequences that necessitate tools for non-human 
model systems. Ideally, tools used in humans should be 
transient and reversible, such as non-covalent binders of 
proteins that are rapidly cleared from the body in hours 
to days. Proteins can also be sampled with or without 
labeling from interstitial fluid microdialysis or directly 
from other fluids (e.g. blood, cerebrospinal fluid, urine, 
saliva). In-human protein labeling and tracking tools 
include isotopes, binders, nanoparticles, and tracers that 
associate with or mimic proteins of interest, but these 
options almost always do not permanently change pro-
teins or proteomes as some model system tools do. We 

will first describe useful methods of protein labeling, 
then elaborate on how labeled and unlabeled proteins can 
be tracked and detected in model systems. We cite spe-
cific examples as references to refer to that should allow 
researchers to quickly adapt a tool of interest to their 
research with both methods and details. These methods 
are useful for studying protein function in biological con-
texts, a critical part of the ultimate goal in understand-
ing the complexity of model organisms and human health 
that is still elusive to understanding.

Protein labeling
Tracers
Protein labeling has a long history with some tools still 
remaining relevant today. Evans blue (EB) described 
100 years ago in 1920 is an example of a dye that is still 
widely used, in fact even more frequently over the past 
decade, as it is an inexpensive and clear way to visualize 
the permeability of organs, critical to understanding the 
BBB [15, 16]. EB functions by binding albumin, the most 
abundant protein found in blood plasma. Under normal 
physiological conditions in young mice, albumin effec-
tively does not cross the BBB. However, damage to the 
BBB increases the permeability of blood proteins into the 
brain, which can be visualized by increased EB staining 
in brain tissue during ischemic stroke, for example [17]. 
Leakage of intravenously injected EB into the brain was 
also reported during normal aging in 12 to 24 month old 
mice, but not 2 to 4 month old mice, suggesting EB is also 
a useful tool even under more subtle contexts, although 
care should be taken as old brains often exhibit autofluo-
rescence that may confound the observation of fluores-
cence from EB [8, 18]. In addition, lung endothelial cells 
can be used as positive controls for tracers or proteins in 
BBB experiments as they do not possess the restrictive 
barrier seen in the brain [19, 20]. Other tracers are availa-
ble to also track leakage through the BBB, including fluo-
rescein, trypan blue, biotin, horseradish peroxidase, IgG, 
and isolectin [15, 19]. Labeled dextrans are a tracer of 
particular interest as the size (10 to 70 kDa), wavelength, 
and brightness can be easily controlled to examine how 
different molecular weight molecules interact with the 
BBB [19, 20].

MRI contrast agents also were originally used in free 
circulation, especially Gd3+ [21, 22]. Like EB, Gd3+ dem-
onstrates some weak protein binding, often for proteins 
that naturally coordinate other ions [23]. To avoid accu-
mulation in the body, chelators such as DTPA and DOTA 
are now often used to facilitate contrast agent removal 
[24]. These chelators can also be used to directly chemi-
cally attach Gd3+ or other lanthanides to a protein of 
interest to track specific proteins, rather than being a 
simple free circulating contrast agent [25, 26]. Positron 
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emission tomography (PET) using radionuclides, includ-
ing 64Cu, 68 Ga, and 177Lu, chelated by DOTA can simi-
larly be used to directly visualize proteins and cells in 
vivo [27, 28].

Genetically encoded labels
Tools to label proteins have been long used to track indi-
vidual proteins, of which many are genetically encoded 
(Fig.  1A). Most commonly, GFP and other fluorescent 
proteins can be co-expressed attached to a protein of 
interest as a fusion protein [29]. Although one of the 
most simple methods of protein labeling, this approach 
still has advanced uses, such as in super-resolution and 
single-molecule live-cell microscopy [30, 31]. Intracellu-
lar localization of proteins can often be observed via this 
approach, as well as changes in localization upon various 

stimuli. In terms of obtaining physiologically accurate 
results, the major drawback to these fusion proteins is 
the large size of the fluorescent protein label which can 
often interfere with biological functions, such as secre-
tion, enzymatic activity, or interactions [32].

Alternative labels to GFP fusion proteins include 
epitope tags such as FLAG, hemagglutinin (HA), and 
Myc tags [33, 34]. These tags are only a few amino acids, 
greatly reducing the probability of interfering with pro-
tein function. The disadvantage here is that exogenous 
antibodies must be added for detection, increasing the 
complexity of the experiment. However, highly specific 
antibodies for these tags are readily available, minimiz-
ing off-target labeling for proteins where antibodies are 
untested or unavailable and enabling fast and accurate 
experimental results.

Fig. 1  Tools for protein labeling. Summary of important protein labeling methods discussed in the review and their key advantages and limitations 
are highlighted here
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Some peptide tags allow enzymatic modifications to 
target proteins, such as methods using formylglycine-
generating enzyme (FGE), sortase, biotin ligase, and 
lipoic acid ligase [35]. In these methods, a short peptide 
sequence is introduced into a specific site in the protein 
of interest and subsequently acted upon by the enzyme 
and any additional substrates to generate a new chemical 
group that can be selectively labeled. For example, FGE 
recognizes a 6–13 residue peptide tag and converts a 
cysteine within the motif into an aldehyde group that can 
be further tagged with probes using hydrazide and ami-
nooxy chemistry [36]. These chemoenzymatic methods 
are useful for site-specifically installing a number of dif-
ferent functionalities onto proteins but have limited uses 
in vivo.

Other genetically encoded tags such as glutathione-S-
transferase (GST), chitin binding protein (CBP), maltose 
binding protein (MBP), and His tags should generally 
be avoided for protein tracking, although they have an 
advantage in affinity protein purification [33, 34]. GST, 
CBP, and MBP are all proteins that may interfere with 
protein function and distribution like GFP, but without 
the advantage of fluorescence. Also, His tags are small 
like FLAG, HA, and Myc tags, but, in our experience, 
antibodies may not always be as effective in specific His 
tag identification.

SNAP-tags, CLIP-tags, and HaloTags are self-labeling 
protein tags that provide another alternative to geneti-
cally encoded fluorescent proteins [37, 38]. These tags 
allow for the attachment of a small molecule fluorophore, 
biotin, or bead to a protein of interest by covalently link-
ing these molecules with the chemical group that reacts 
with the genetically encoded tag. This application can be 
useful in specialty applications for some techniques, such 
as a correlative light and electron microscopy [39]. Of 
note is that HaloTags have been reported to have ninefold 
higher signal than SNAP-tags, which can be important 
for super-resolution microscopy [40].

The major advantage of genetically encoded tags is the 
high degree of control over the location of the tag within 
the protein. Small peptide tags have allowed these labels 
to be applied with minimal interference to protein activ-
ity or distribution and to be functionalized with diverse 
molecules useful in many contexts. While these tools 
have been successfully used for site-specific labeling of 
individual proteins, they cannot easily be applied for effi-
cient labeling of many proteins at a time and often face 
limitations for use in vivo.

Chemically linked labels
Chemical labeling of proteins is a useful way to label 
specific proteins or even entire proteomes (Fig.  1B). 
Chemical labeling allows for smaller, potentially less 

disruptive tags for downstream analysis in experiments 
[5, 41]. Through chemical labeling, the protein or pro-
teome can be enriched and/or identified at a later time 
and, in this way, tracked from its original source.

Two of the most widely used chemical bioconjugation 
methods for proteins are N-hydroxysuccinimidyl (NHS) 
esters and maleimides [42]. NHS esters label primary 
amines, targeting lysine side chains and the N-termini 
of proteins and peptides. However, care should be 
taken as other residues such as tyrosine and serine can 
be labeled if reactions occur for too long or at too high 
concentrations [43]. Maleimides label the side chain 
of cysteines, but oxidation of cysteines into disulfides 
can block the reaction [44]. Both reactions can be used 
independently to confirm that the chemical modifica-
tion does not interfere with protein function. In our 
experience, NHS esters are easier to use at first as the 
reaction is more reliable, especially since lysines often 
occur on the surface of proteins and cysteines are more 
likely to be inaccessible [5]. Maleimides can then be 
used to confirm findings. Maleimides can also be used 
for site-specific labeling of proteins by first mutating all 
cysteine residues to serine, which is chemically similar, 
and then creating cysteine point mutations throughout 
a specific protein of interest [45]. In addition to lysine 
and cysteine modifications, many chemical reactions 
have been developed to specifically label other residues 
including methionine, tyrosine, aspartate, glutamate, 
and the N- or C- terminus. Overall, these techniques 
have been tuned to have increased control on site selec-
tivity but are still limited in terms of specificity of labe-
ling compared to genetically encoded tags.

Critical for visual and spectroscopic tracking of pro-
teins in many applications is the selection of small mol-
ecule fluorophores. Small molecule fluorophores may 
interact with proteins, lipids, and other biomolecules 
through hydrophobic and electrostatic interactions, 
leading to inaccurate measurement of fluorescent sig-
nals [46]. The brightness of the molecule, protein con-
centrations, and wavelength, such as autofluorescence 
of tissues at the GFP/488  nm wavelength, are also 
important considerations. In our experience, bright 
Atto dyes in the red shifted region generally give the 
best results, but controls using other dyes or other 
proteins should be included to minimize false posi-
tives. In addition to fluorophores, many other chemi-
cal tags can be linked to proteins using the methods 
described above, including crosslinkers and enrich-
ment tags. Chemical labeling is very effective for labe-
ling cell surface proteomes and fluid solutions such 
as blood plasma or CSF that can be labeled ex  vivo 
and re-injected in  vivo if needed. Our research group 
has applied these methods to label the mouse plasma 
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proteome and assess changes in BBB transport during 
aging in vivo [5].

In vivo SILAC and noncanonical amino acid labels
Methods that minimize changes to proteins are typically 
less perturbative to protein localization and function. 
The most non-perturbative labeling method is nonradi-
oactive, isotopic labeling, such as SILAC (Fig.  1C). This 
method enables whole proteome labeling via the incor-
poration of amino acids containing heavy isotopes such 
as 13C, 15 N, and 2H [47]. Heavy-labeling of proteins can 
then be detected using mass spectrometry based on a 
defined mass shift compared to the naturally occurring 
lighter isotopes in proteins. While SILAC is easily car-
ried out in cell culture by growing cells in media contain-
ing heavy amino acids, labeling in vivo in mice or other 
mammals is more difficult due to the expense required 
to provide several weeks or months of chow for labe-
ling and the inability to easily remove natural isotopes. 
However, 13C6-Lysine feed has been shown to provide 
sufficient labeling in mice after about 2 weeks, at a cost 
for feed of ~ $700 per mouse, which may be a reason-
able cost for some experiments [48]. While SILAC is 
extremely useful for distinguishing proteins from differ-
ent sources for mass spectrometry applications, there 
are two main disadvantages of this technology. Firstly, 
SILAC-labeled proteins cannot be functionalized easily 
for other applications such as histology. Secondly, and 
perhaps more importantly, SILAC labeled proteins can-
not be enriched, so isotopically-labeled proteins at very 
low concentrations cannot be easily detected, even with 
mass spectrometry.

A new alternative to SILAC mice is the use of nonca-
nonical amino acids (ncAAs) which can be incorporated 
into proteins using native or engineered protein transla-
tion machinery (Fig. 1C). ncAAs are often used to intro-
duce bioorthogonal tags that can be labeled or enriched 
using click chemistry. Azidohomoalanine (AHA) and 
homopropargylglycine (HPG) are methionine analogs 
that can be incorporated into wild type mouse or human 
cells and tissues by endogenous methionyl-tRNA syn-
thetases, with minimal changes to protein biology [49, 
50]. AHA or HPG can be provided as feed, in drinking 
water, or injected, but we have noticed toxicity with intra-
peritoneal injections in mice, especially at concentrations 
at the maximum levels of what was reported previously 
[50]. These ncAAs are best used when provided in mouse 
feed containing 0% methionine to reduce methionine 
incorporation [49]. We have successfully used both AHA 
and HPG to label tissues and blood plasma, and, in our 
experience, AHA labeling is noticeably stronger and less 
toxic than HPG, so AHA is greatly preferred. One disad-
vantage of AHA/HPG mouse labeling is that specific cell 

types or tissues cannot be targeted as these ncAAs use 
the native mouse methionyl-tRNA synthetase for incor-
poration, so labeling occurs throughout the entire mouse. 
We also observe moderately less labeling in the brain, 
likely due to the BBB occluding the ncAAs.

To overcome the challenge of tissue-specific or cell-
specific incorporation of ncAAs in animals, the use 
of the pyrrolysyl-tRNA synthetase/tRNA pair (PylRS/
tRNAPyl) that targets the amber codon was first imple-
mented, as only cells or tissues expressing this orthog-
onal pair will be labeled with the corresponding ncAA 
[51]. Since PylRS/tRNAPyl does not occur in mammals, 
it can incorporate novel ncAAs into cells or tissues only 
where it is expressed. PylRS/tRNAPyl has mostly been 
used to introduce ncAAs site-specifically into proteins 
genetically modified to contain the amber codon in E. 
coli until recently, but this system has an advantage of 
now > 150 ncAAs engineered for use through PylRS 
mutations [51, 52]. The lab of Jason Chin has expanded 
the PylRS/tRNAPyl pair into mice and other eukary-
otes, with their SORT-M system. This technology can 
also target any amino acid codon, rather than only the 
amber codon, by mutating the tRNAPyl anticodon to 
correspond to the targeted codon. This system has also 
been further improved by mutations that increase the 
tRNAPyl stability in mammalian cells [52]. Two ver-
sions of ncAAs, one containing a methylcyclopropene 
side chain and one containing a terminal alkyne can be 
used with the SORT-M system to facilitate bioorthogo-
nal click chemistry with desired probes. The SORT-M 
system is the most diverse system for use in eukaryotes, 
although in our hands we have found it to be less robust 
for strong labeling as the tRNA stability is still limited 
in  vivo. However, this system has now been clearly 
demonstrated to be a powerful tool in mice with recent 
method developments of the Chin lab [53].

To overcome the limitation of tRNAPyl stability or 
expression, certain aminoacyl-tRNA synthetase (aaRS) 
mutants exist that can incorporate ncAAs into mam-
malian cells without requiring the expression an exog-
enous tRNA. The lab of David Tirrell found a mutant 
mouse methionyl-tRNA synthetase (MmMetRSL274G), 
allowing the incorporation of the azide-containing azi-
donorleucine (Anl) at methionine sites in mice [54, 55]. 
We have also recently discovered a mutant yeast tyrosyl 
(ScTyrRSY43G) and mouse phenylalanyl (MmPheRST413G) 
tRNA synthetase that can incorporate 3-azidotyrosine at 
tyrosine sites and 4-azidophenylalanine at phenylalanine 
sites, respectively, in mice [56, 57]. The MmMetRSL274G, 
ScTyrY43G, and MmPheT413G all are efficient at amino acid 
incorporation in our hands. However, we have observed 
the MetRS and TyrRS mutants seem to have the most 
robust incorporations of their respective ncAAs in mice 
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compared to PheRS or the SORT-M system. The TyrRS 
also has the advantage of a short gene sequence, which 
is important for the limited packing capacity of adeno-
associated viruses (AAVs) for viral genetic transduction. 
The TyrRS also allows ncAA incorporation at near maxi-
mum efficiency even at low concentrations (15  µM of 
3-azidotyrosine) [56]. Overall, SORT-M, MmMetRSL274G, 
ScTyrY43G, and MmPheT413G all have shown great prom-
ise for cell and tissue-specific proteome labeling. Using 
a multiple of these four approaches can also be useful to 
increase proteome coverage and to ensure reproducibil-
ity of results with different ncAAs incorporated into dif-
ferent amino acid sites.

The lab of Alice Ting has also produced other comple-
mentary methods using proximity labeling with BioID 
or TurboID, which both utilize a biotin ligase linked to 
a protein of interest or cellular localization sequence to 
attach biotin to nearby surrounding proteins (Fig.  1D) 
[58–60]. As pulling down biotinylated proteins using 
streptavidin is a widely-used, low background, and 
high-specificity technique, it can offer easy adoption 
and reliable results. One caveat is that endogenous bio-
tin is consumed by the method, so care must be taken 
especially when used in vertebrates. There are also 
endogenously biotinylated proteins, but these can be 
subtracted out as they are also present in control sam-
ples. This approach has been used in vivo to successfully 
label tissue-specific secretomes in mice, which can then 
be detected in serum [60]. This approach also allows for 
a powerful proximity labeling technique, in which the 
biotin ligase is attached to a single protein to identify the 
nearby interaction partners, even revealing many interac-
tion partners that are unknown [61].

Protein tracking
Single protein tracking
As discussed above, there are many methods to label pro-
teins (Fig. 1). These labels can then be used to track pro-
teins from their source of production to another location. 
To do this in vivo, labeling at a specific cell or tissue type 
and identifying the labeled protein at another location is 
required. To achieve this goal in mice, the Cre-loxP sys-
tem can be harnessed to drive genetic changes allowing 
labeling only in a certain cell type [62]. The aaRS mutants 
described above can be introduced into a transgenic 
mouse where expression is normally repressed by a stop 
cassette floxed by loxP sites. Cells expressing Cre will 
remove the stop cassette to allow expression of the aaRS 
and the incorporation of the corresponding ncAA only 
in those specific cells. For example, Cre can be expressed 
specifically in brain endothelial cells [63], possibly allow-
ing labeled proteins made in these cells to be tracked to 
either the abluminal brain side or the luminal blood side.

Furthermore, GFP and similar genetically encoded 
fluorophores have long been a useful tool for tracking in 
several contexts. When inserted into the locus of growth 
hormone in transgenic mice, GFP can be used to visual-
ize secretion in the pituitary [64]. GFP can be combined 
with the Cre-loxP system to easily visualize the desired 
protein in a particular cell type. Mice where all cells have 
been labeled with GFP have also been used in the con-
text of parabiosis to track immune cells from the labeled 
mouse to the unlabeled mouse [65, 66].

An alternative to the Cre-loxP system is the use of 
viruses harboring tissue or cell type-specific promot-
ers to deliver gene constructs, like a bioorthogonal aaRS 
or tagged protein, into specific cell types. Lentivirus 
and adeno-associated virus (AAV) are the most com-
monly used viruses for gene delivery into cultured cells 
or in  vivo. Lentivirus is a retrovirus that integrates its 
genomic information into the host’s genome which is 
advantageous for making stable cell lines in vitro but can 
cause insertional mutations in  vivo [67]. AAVs, on the 
other hand, exhibit non-integrating gene expression and 
are considered to be safer and are now more commonly 
used for in  vivo and therapeutic gene delivery [68, 69]. 
Different AAV serotypes have particular tropisms that 
are important to consider for targeting the infection to 
certain tissue types. To further control transduction, the 
gene can be under the control of a cell-specific promoter.

Proteome tracking
Labeling of proteins using ncAAs has been recently 
used to track even entire proteomes in  vivo. For exam-
ple, the proteome of excitatory neurons was specifically 
labeled in mice using MmMetRSL274G under the control 
of the CaMK2a promoter [70]. These mice exhibited a 
distinct protein expression pattern when placed in an 
enriched environment compared to a standard cage [70]. 
A separate study specifically labeled proteins in hip-
pocampal neurons in mice trained for active place avoid-
ance via foot shocks in a quadrant of a circle to induce 
long-term memory (LTM) formation. Known memory 
proteins were found to be expressed during LTM for-
mation, as well as new mRNA splicing-associated pro-
teins not previously implicated in LTM [71]. In another 
study, bioorthogonal labeling of a mouse expressing 
MmMetRSL274G parabiosed with an unlabeled mouse was 
used to show infiltration of labeled blood protein factors 
into the muscle of the unlabeled mouse [55]. This study 
shows that protein signaling through the blood stream 
can affect distal tissues, which can be tracked with 
ncAAs. Likewise, tracking the labeled melanoma pro-
teome in mice using ScTyrY43G or MmPheT413G can show 
the impact of cancer-related proteins on distal tissues, 
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an example of how protein tracking can determine the 
impact of disease on indirectly affected tissues [56].

One advantage of ncAAs over genetically encoded 
fluorophores like GFP, is the ability to use more diverse 
imaging techniques to track proteins. GFP labeled pro-
teins have long been imaged in live cells, a simple and 
reliable method of tracking [72, 73]. Super resolution 
techniques where brighter, synthetic fluorophores are 
preferred, are facilitated by bioorthogonally tagged 
ncAAs that can be reacted with fluorophores via click 
chemistry [74, 75]. Click tags have also been used to 
track proteins in vivo, such as for localization of proteins 
within a mouse through fluorescent, infrared, or other 
imaging [5, 76, 77].

Protein detection
In addition to the above imaging methods, proteins can 
be detected using histology methods. Proteins have been 
traditionally imaged using histology by either antibod-
ies against the protein of interest or a tag attached to the 
protein of interest. Click chemistry with ncAAs is a new, 
important way to detect proteins using histology. Like 
protein tags and chemical linked labels, ncAAs can be 
used to detect proteins where there is no effective anti-
body for a certain protein because a fluorophore can be 
attached to any targeted protein that has the required 
ncAAs incorporated [78]. In addition, ncAAs allow nas-
cently made proteins from specific cells to be detected 
via pulse chase experiments, allowing both for differen-
tiation of newly synthesized proteins from older proteins, 
relevant to disease, such as in protein aggregates, and for 
targeted applications where a certain cell type is being 
studied in complex tissues, such as the brain [54].

Mass spectrometry is becoming an increasingly more 
powerful method to detect proteins and proteomes. 
SILAC for differential detection of proteins by mass spec-
trometry is one such application that has been widely 
used to make biological discoveries [48]. However, 
SILAC does not allow for cell-specific labeling or enrich-
ment of proteins of interest, which can limit detection of 
proteins by more than two orders of magnitude [79]. By 
using ncAAs, enrichment is possible when labeling full 
proteomes [56]. ncAAs only modify natural amino acids 
by a few atoms, allowing for minimal changes in protein 
function and overall physiology, similar to SILAC and 
unlike larger protein tags. Practically, we have found the 
best way to enrich proteins ex vivo is by using clickable 
biotin with a cleavable linker [80]. In our experience, this 
method enriched the largest number of labeled proteins 
or peptides, while minimizing background by offering the 
ability to filter out unlabeled peptides computationally 
after mass spectrometry results are obtained. We have 
found the software packages MaxQuant and Perseus 

useful because they contain the ability to create these fil-
ters [5, 81, 82]. Mass spectrometry has gone from fem-
tomolar to attomolar detection in recent years, enabling 
detection of even low concentrations of protein [83, 84]. 
As the concentrations of proteins in brain fluid and tissue 
can be even lower, especially after crossing from blood to 
the brain, enrichment allows for an even lower range of 
detection.

Autoradiography is another useful method for protein 
detection. In this technique, proteins can be labeled with 
radioisotopes and injected into animals. One common 
method is to chemically conjugate the desired proteins 
to the chemical chelator DOTA which can further react 
with radionuclides including 64Cu, 68 Ga, and 177Lu. Tis-
sues can then be analyzed ex  vivo to determine biodis-
tribution of proteins or even cells. This technique has 
successfully been used to detect the transport of target 
proteins and plasma into the brain or spinal cord after 
crossing the BBB [27, 65].

In line with mass spectrometry proteomics that can 
detect thousands of proteins, antibody and aptamer 
arrays have been also used for multiprotein detection. 
The main advantage over mass spectrometry here is 
that arrays can have high sensitivity to proteins even at 
low concentrations and have a lower technical barrier 
to usage. However, arrays have fallen behind in many 
respects to mass spectrometry because arrays are only as 
good as the antibodies or aptamers they contain. If many 
antibodies/aptamers are not specific to the desired pro-
tein, false positives or false negatives can often appear. 
New protein detection platforms have addressed these 
issues by developing probes with very high sensitivity and 
specificity for protein targets, such as platforms multi-
plexing thousands of proteins by using pairs of antibodies 
combined with rolling circle amplification PCR employed 
by OLINK or aptamer arrays developed by Somalogic 
[85, 86]. Data from these platforms can be processed in 
analyzed with packages in R [87].

New methods are upcoming that will advance protein 
detection even further. Notably, highly parallel identifi-
cation of single protein molecules offers the promise of 
RNAseq level sensitivity for detection of proteins [88]. 
This method would theoretically outperform even newer 
mass spectrometry methods, although it is still in early 
development. Detection will also be improved by meth-
ods allowing for alternative enrichment strategies outside 
of click chemistry, such as with biotinylation of proteins 
directly in live animals via TurboID [59]. Spatial omics 
may also be combined with these methods in the future 
to determine if proteins are detected in cells without 
the corresponding RNA, likely indicating the protein 
originated from another cell [89]. Data from all these 
tools increasingly offer ample opportunities for machine 
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learning and multi-modal data analysis, as almost all 
individual molecules in all cells, fluids, and tissues are 
beginning to be accessible. With newer technologies, 
the ease of labeling, tracking, and detecting proteins will 
allow for proteomics discoveries on the scale of, and per-
haps combined with, RNAseq.

Conclusion
RNAseq has been a major force driving our understand-
ing of homeostasis, aging, and disease states of cells and 
tissues. However, protein changes often do not correlate 
well with RNAseq and require the use of protein track-
ing and detection methods for understanding of the 
biology underlying these processes in organisms. Tools 
to measure and detect proteins have developed signifi-
cantly over the past decade, but they have not yet reached 
their prime to understand the full span of the proteome. 
Newer tools for protein detection described here offer 
temporal and cell-specific proteome coverage across a 
large range of up to thousands of proteins. Newer protein 
labeling methods offer more precise control over the pro-
teome, even in  vivo in mice. Mass spectrometry devel-
opments have enabled these technologies even more by 
increasing proteome coverage. By applying these tools 
to model systems, new mechanisms of mammalian biol-
ogy that have implications in the detection and treatment 
of human disease will be uncovered. These tools will 
also likely be applied directly to humans where effects 
are transient or produce no discernable negative effects 
in model systems. We predict that now as protein labe-
ling and detection methods are becoming accessible to 
researchers, our understanding of the proteome, includ-
ing the plasma proteome, will once again transform our 
insight into the biology of living organisms and diseases 
in the coming years.
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