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Proteostasis failure exacerbates neuronal 
circuit dysfunction and sleep impairments 
in Alzheimer’s disease
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Abstract 

Failed proteostasis is a well-documented feature of Alzheimer’s disease, particularly, reduced protein degradation and 
clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept 
in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey 
Alzheimer’s disease progression with the growing evidence for a bidirectional relationship of sleep disruption and 
proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer’s disease disrupts neurons that regulate the 
sleep–wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subse-
quent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenera-
tive disorders and contributes to memory impairments in Alzheimer’s disease. Canonical pathological hallmarks, 
β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic 
neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-
loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of 
proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond 
β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and hun-
tingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in 
cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are 
not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing thera-
peutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mecha-
nistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction 
as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer’s 
disease and other brain disorders.
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Graphical Abstract

Background
Objectives
The objective of this review is to raise attention to 
emerging evidence of a bidirectional relationship 
between sleep loss and protein homeostasis (proteo-
stasis) disruption in Alzheimer’s disease (AD), high-
lighting how this positive-feedback-loop exacerbates 
neurodegeneration, and AD progression. We explore 
how sleep impacts the protein life cycle, and vice versa, 
focusing on post-translational proteostasis: response to 
misfolded protein, its degradation and clearance from 
the brain. Clearance of proteinopathy, or lack thereof, 
is a high priority to help dissect both etiology, diagno-
sis and treatment of AD and other neurodegenerative 
diseases (NDDs). We review current pharmacological 
and lifestyle interventions for sleep, their relation to 
proteostasis, biomarkers and potential development of 
preventative, combinatorial and personalized treatment 
paradigms. Sleep and proteostasis disruptions are key 
interactive mechanisms underlying rampant proteinop-
athy in prodromal and symptomatic AD and, there-
fore, the sleep-proteostasis interplay presents a unique 
opportunity for disease modification.

Rationale for the bidirectional sleep‑proteostasis 
relationship
NDDs of aging share a common mechanism of pro-
teinopathy, in that toxic, misfolded proteins accu-
mulate, escalating the seeding throughout the brain, 
and aggregating in extra- and intra-cellular inclusions 
[1, 2]. Treatment of proteinopathy must overcome 
three challenges. Firstly, proteinopathy occurs in dec-
ades long prodromal phases, with diagnosis occurring 

primarily at advanced stages. Secondly, because of 
extensive proteinopathy at advanced stages, neurode-
generation persists despite interventional treatment. 
Finally, endogenous processes that normally clear pro-
teins in otherwise healthy individuals are overwhelmed, 
limiting the efficacy and lasting effects of removing 
aberrant proteins. In this review we focus on these con-
sequences, possible mechanisms of proteostasis that 
are overwhelmed in NDDs [1], and reasons why proteo-
stasis fails prodromal to AD.

It is paramount to understand the mechanisms that 
potentiate β-amyloid (Aβ) and tau spread in AD, espe-
cially early events of disease progression. Neurodegen-
eration and cognitive decline strongly correlate with 
regional accumulation of tau [2–4], though both Aβ and 
tau contribute distinct effects on neuronal electrophysi-
ology [5], disrupting behavioral phenotypes, including 
cognition and sleep. Current models of neuronal network 
dysfunction in AD ascertain that neuronal hyperactiv-
ity occurs as a result of Aβ pathology, while tau is shown 
to suppress activity [6, 7]. Hyperactivity was observed in 
layer 2/3 neurons in plaque bearing APP/PS1 mice when 
compared with wild-type controls; though age-matched 
rTg4510 transgenic mice expressing aggregated human 
tau (P301L) without Aβ pathology exhibit significant 
reduction of cortical activity levels compared to APP/
PS1 mice [5]. Combination of Aβ and tau in in  vitro 
entorhinal cortical (EC) slices and in mice demonstrates 
a suppression in neuronal activity from soluble tau (not 
dependent on neurofibrillary tangles), and that this effect 
dominates over the Aβ-induced hyperactivity [5, 8]. 
These results are supported by evidence in other preclini-
cal models [6, 7, 9, 10]. Tau pathology brings about spa-
tial memory deficits in old but not young EC-Tau mice, 
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wherein excitatory, but not inhibitory, neurons in the 
medial EC were shown to be vulnerable to tau pathol-
ogy [11], in line with tau-mediated neuronal suppression. 
Interestingly, evidence indicates that the presence of Aβ 
facilitates the effect of tau on neuronal circuit dysfunc-
tion in mice [5], and vice versa for the reliance on tau for 
Aβ-induced hyperexcitability [12–14]. How these effects 
present in AD patients across progression may rely on 
differing regional spread of Aβ and tau [3, 15], and is an 
emerging area of NDD research [6, 7, 16]. For our pur-
poses, we focus on how Aβ and tau impact the neuronal 
circuitry of sleep [9, 17, 18], and vice versa.

In AD, loss in the quantity and quality of sleep, par-
ticularly slow wave and rapid eye movement sleep (SWS; 
REM), is associated with pathological development [19–
21]. These alterations begin early and pose an increased 
risk for developing cognitive impairment and AD pro-
gression [22–25]. Many aspects of proteostasis exhibit 
sleep-regulated and rhythmic changes in activity. Protein 
degradation, and clearance from the brain are impaired 
in AD [1] and intimately linked to sleep [21, 26–30]. In 
particular, increased periods of neuronal activity potenti-
ate Aβ and tau spread [30–32], reduced glymphatic clear-
ance occurs with SWS loss [27, 29], and dysregulation of 
the unfolded protein response (UPR), ubiquitin protea-
some system (UPS), and autophagic-lysosomal pathway 
(ALP) results from sleep and circadian disruption [1, 21, 
26, 28, 33].

Failed proteostasis, including accumulations of 
undigested autophagosomes and lysosomes, and pro-
teinopathies like Aβ or tau, cause neurodegeneration in 
AD-affected brain regions, including the EC, hippocam-
pus, hypothalamus and locus coeruleus (LC) [1, 3, 15, 
34]. This neurodegeneration, in turn, impairs neuronal 
circuitry that regulates memory and sleep. Furthermore, 
Aβ and tau influence the sleep state and regulate circa-
dian rhythms, respectively [17, 35]. Overall, the dynamic 
relationship between sleep and proteostasis means 
impairment of one mechanism exacerbates the other, and 
together accelerate AD progression.

In sum, sleep loss and proteostasis failure are interac-
tive in AD, involving poor sleep and disrupted circadian 
rhythmicity which impair biological processes involved 
in protein clearance. Aβ and tau then feedback to exert 
direct and indirect effects, via neurodegeneration of 
sleep–wake controlling neurons, on the sleep–wake 
cycle. This cycle repeats throughout AD progression; 
however, we propose that sleep loss and proteostasis dys-
function in the Alzheimer’s prodromal phase exists as a 
positive-feedback-loop and is a critical driver of disease 
progression. Although we focus our discussion herein 
on Aβ and tau, the growing notion of mixed pathology 
in NDDs [36] and the ubiquity of proteostasis disruption 

in these disorders [1] demonstrate that the bidirectional 
sleep-proteostasis relationship impact other protein 
aggregates involved in NDD.

AD progression is accelerated via a positive-feedback-
loop between proteinopathy and neuronal network dys-
function. Given the empirical evidence in the recent 
decade for sleep as a potent regulator of proteostasis, 
we postulate the sleep-proteostasis relationship is criti-
cal in the early phase of AD: with Aβ and tau accumula-
tion the neuronal electrophysiological signature of sleep 
becomes impaired, hence contributing to exacerbated 
proteinopathy.

Sleep impairment is a risk factor for Alzheimer’s disease
Risk factors associated with increased sleep disorders 
and NDDs are critical to identifying vulnerable popu-
lations and addressing sleep loss. Sleep is a potentially 
modifiable risk factor for AD [37]. Genetic risk for AD 
reduces sleep duration, averaging 1.87 less sleep hours 
per night [38]. A recent meta-analysis concluded that 
broad sleep impairments (i.e., poor quality, insomnia, 
under-/over-sleeping, sleep apnea, excessive daytime 
sleepiness (EDS)) imparts a 1.55 × relative risk for AD; 
1.65 × higher for cognitive impairment and most nota-
bly for preclinical AD (3.78x) [22]. For example, under-
sleeping (< 6 h) for individuals in their 50 s and 60 s and 
potentially in a preclinical AD stage, increases demen-
tia risk by 30% [39]. Obstructive sleep apnea (OSA), the 
most common cause of sleep disturbance in adults, poses 
a significantly high grouped risk for AD (2.37x), and has 
synergistic detrimental effects with amyloid, tau and neu-
rodegenerative (A/T/N) biomarkers for AD in which hip-
pocampal degeneration driven by AD proteinopathy may 
exacerbate breathing problems and nighttime apneas [22, 
23, 40]. Furthermore, mild cognitive impairment (MCI) 
associates with significant alterations in sleep across 
sleep stages, including awakenings throughout the night 
and decreased sleep efficiency [24]. Cumulatively, this 
data suggests that sleep disruptions can accelerate AD-
associated neurodegeneration most prominently in the 
pre-symptomatic disease stage, and vice versa.

Genetics can contribute to increased risk of sleep 
related NDD and AD. Variants of aquaporin-4 (AQP4) 
which is related to the glymphatic pathway, have been 
associated with AD pathology in mouse models [41] and 
in cognitive performance in Parkinson’s disease (PD) 
[42]. Further dysregulation of AQP4 may be occurring 
in neurodegeneration (AD and frontotemporal demen-
tia (FTD)), given a higher presence of AQP4 in the cer-
ebrospinal fluid (CSF) [43]. Similarly, a steeper decline 
in cognitive function was observed in men carrying the 
apolipoprotein E4 (ApoE4) allele with sleep apnea than 
ApoE3 [44]. Better sleep consolidation reduces AD risk 
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associated with ApoE4 genotype in older adults with-
out dementia at baseline (mean age ~ 82) and decreases 
tauopathy/formation of neurofibrillary tangles. This indi-
cates the importance of assessing sleep in ApoE4 + indi-
viduals who are at higher risk for AD, and that 
introducing interventions through sleep could potentially 
reduce neurofibrillary tangle burden [45].

It is important to recognize that the majority of studies 
on sleep in AD, in particular those investigating the role 
of genetic variations such as ApoE, have been conducted 
in Caucasians, and less is known about other ethnici-
ties with different genetic risk profiles. Recent work has 
identified an interaction of ApoE4 genotype with OSA in 
older black adults (average age ~ 70), associating with AD 
biomarkers including hippocampal volume. This interac-
tion was not observed in white participants [46]. Further-
more, African Americans with at least one ApoE4 allele 
are significantly more likely to have a shorter sleep dura-
tion than African Americans with an E3 genotype [47]. 
Despite higher sleep disruption in non-race-stratified 
ApoE4 + participants > 50  years old, the race-stratified 
effect was not observed in Caucasians [47]. ApoE geno-
type may also correlate with risk for OSA in Chinese 
populations [48]. Although the interactive mechanisms 
of sleep and proteostasis are likely a global phenomenon, 
future studies should identify the role race and ethnicity 
play in exacerbating the contributions of sleep loss and 
proteostasis failure to AD progression.

Sex differences affect an individual’s risk profile for 
NDD and should be considered in understanding how 
sleep loss can impact progression to NDDs. AD is seen 
more frequently in women [49]. While men are more 
likely to experience sleep apnea, and other sleep disorders 
are more frequently observed in adult men vs women 
[50], apneas increase in post-menopausal women [51]. 
PD and the related synucleinopathy, Dementia with Lewy 
bodies (DLB) are more frequent in men, yet the increase 
rates of REM-based disorders may represent an underap-
preciated risk factor in women who tend to develop the 
disease later in life [52].

Exact AD-related sleep disruptions vary across indi-
viduals and studies, yet sleep disturbances are common 
in AD patients. The discussion herein on the relation-
ship of sleep with mechanisms of proteostasis will mainly 
focus on disturbances of night-time sleep, though the 
importance of EDS is notable and deserving of atten-
tion, including as a factor in circadian arrhythmicity. 
EDS is common in AD patients, and has been shown 
to be more severe in patients that have mild DLB, and 
behavioral variant FTD to a lesser degree [22, 53–55]. 
This indicates EDS as a common feature among elderly 
populations and especially in dementia patients. Recent 
evidence has established a link between Aβ deposition 

and EDS in healthy adults and elderly individuals without 
cognitive impairment, making it a potential early predic-
tor of AD [56, 57]. Notably, sleep impairments in aged 
individuals are intimately linked to impaired cognitive 
processes [58]. Briefly, AD associates with a multitude of 
possible night-time sleep disturbances, including longer 
time to sleep onset, increased time awake and nighttime 
arousals, less non-REM (NREM) stage 2, SWS, and REM 
time, and increased NREM stage 1; though many reports 
indicate the predominance of reduced NREM stage 3/
SWS and disrupted slow wave oscillations in AD [59–64]. 
Figure 1 provides a representative schematic for healthy 
night-time sleep architecture and staging, its relevance to 
memory, and comparisons to the impairments that occur 
in AD.

Proteinopathy and neurodegeneration accelerate 
sleep loss
Given the prevalence of sleep disturbances in AD and 
other NDDs, this section discusses evidence for the 
effect of Aβ and tau on sleep (though these are expanded 
upon in subsequent sections in regard to protein clear-
ance, degradation and spread), the relationship of sleep 
impairment with mixed proteinopathies common in AD 
patients, and, finally, neurodegeneration of the sleep–
wake circuitry in AD.
Role of Alzheimer’s disease proteinopathy in sleep 
disruption

Direct effects of Aβ on sleep
Both major pathological protein species in AD exert del-
eterious effects on sleep function [70], and Aβ oligomers 
interfere with sleep/wake patterns in mice in a dose-
dependent manner [71]. Recently, Özcan and colleagues 
described a direct effect of Aβ on sleep, via injection of 
oligomers of differential length into zebrafish [17]. Sleep 
regulation is Aβ oligomer size-dependent, in which short 
oligomers increase hypothalamic neuronal activity and 
induce wakefulness via adrenergic and progesteroner-
gic receptor signalling, long oligomers reduce neuronal 
activity and induce sleep via the prion protein pathway, 
and very long oligomers have no effect [17]. Conversely, 
Aβ oligomer injection in mice induced sleep fragmenta-
tion (reduced NREM and REM time and increased sleep 
stage transitions) but this  was not observed in prion 
protein-deficient mouse strains [72], suggesting a com-
plex mechanism for Aβ-sleep regulation. These results 
may partially explain the broad spectrum of AD-related 
sleep disturbances, including reduced total sleep time 
and increased daytime sleep. Furthermore, sleep and 
circadian rhythm disruptions in AD may trigger this bi-
directional control of sleep, in which impaired clearance 
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and metabolism of Aβ causes alterations in diurnal fluc-
tuations [27, 73].

Associations of tau with sleep
Multiple recent studies document the relationship 
of tau with sleep disturbances and electroencephalo-
gram (EEG) abnormalities. In cognitively normal older 
adults (mean age ~ 73–75), low frequency EEG signal 
during NREM sleep (1–2 Hz; indicative of delta waves 
prominent in SWS) exhibit an inverse relationship with 
AD pathology most prominently with AV-1451 tau 
positron emission tomography (PET) signal [60, 74], 
and in AD patients (mild-moderate) sleep–wake dis-
turbances have been shown to correlate with CSF lev-
els of phosphorylated tau [75]. Through an increased 
neuronal tau release, sleep deprivation in mice and in 
healthy 30–60-year-old adults compounds this effect 
with greater brain (in mice) and CSF (> 50% increase 
in humans) tau [29, 76], in addition to an increase in 
major AD biomarkers. Higher levels of CSF pT181 and 
pT217, but not pS202, were observed, with increased 

levels of non-phosphorylated tau forms at those 
epitopes [76].

Winer and colleagues assessed associations of tau 
(18F-flortaucipir) and Aβ (11C-PIB) PET levels with 
sleep in older adults (mean age ~ 78), comparing objec-
tive (wristwatch actigraphy) and subjective (Pittsburgh 
sleep quality index: PSQI) measures over 1 week. Objec-
tive sleep impairment correlated with greater tau PET 
in early Braak-related stages, in the EC as well as the 
medial temporal lobe more broadly, but not with corti-
cal Aβ PET. However, both tau and Aβ are significantly 
associated with self-reported sleep disturbances, indicat-
ing that individuals with more Aβ reported worse sleep 
quality than they actually had with significant changes 
in PSQI global and efficiency scores, but not sleep dura-
tion. This effect was potentiated by loss of executive 
function [25]. Whether a subjective underestimation 
of sleep quality can impact progression to future objec-
tive sleep disturbances is an interesting topic for future 
research; critically, these results indicate the need for 
EEG, polysomnography (PSG), and actigraphic and accel-
erometric devices as biomarkers for NDDs (discussed in 

Fig. 1  Schematic of sleep disturbances in Alzheimer’s disease. Sleep is subdivided into stages of rapid eye movement (REM) and non-REM (NREM) 
sleep by signatures of neuronal activity. NREM can be further subdivided into 3 stages; NREM stage 3 is often referred to as slow wave sleep (SWS). 
a In healthy individuals, sleep begins in NREM stage 1, with waning neuronal activity and frequency, which further slows in restorative NREM 
stage 2 and SWS. SWS dominates early in the sleep cycle with synchronous, low frequency delta waves, whereas transitions to REM sleep occur 
a few hours after sleep onset, in ~ 90-min cycles. REM sleep electroencephalogram (EEG) is more akin to wakefulness with higher frequency and 
lower amplitude signals than SWS and dominated by theta waves. Memory consolidation is facilitated by bouts of REM, as well as NREM stage 2, 
prominent late in the sleep cycle, with characteristic high amplitude K-complexes and high frequency sleep spindles in EEG. In summary, REM 
and NREM stage 2 and 3 are important in memory consolidation [65–68]; whereas SWS is also critical for toxic protein clearance and to reduce net 
synaptic strength to dampen aberrant plasticity and preserve a healthy signal:noise ratio of neuronal activity [68, 69]. Individuals who experience 
sleep disturbances are at a higher risk for Alzheimer’s disease (AD), and, moreover, those with AD exhibit characteristic features of sleep loss. b 
In AD, sleep is disrupted throughout the night, in which there is a delayed onset, longer bouts of non-restorative NREM stage 1 sleep, reduced 
bouts of SWS, REM and NREM stage 2, as well as increased wakefulness (notable changes compared to healthy sleep are circled). In sum, sleep 
disturbance poses a significant risk for AD and other neurodegenerative diseases, most prominently through dysregulation of mechanisms that 
facilitate proteinopathy and cognitive deficits (see Fig. 3). Panels A and B are schematic representations of healthy sleep and common disturbances 
that occur in AD. Healthy control sleep stages were informed from [68], and the results of the meta-analysis in [22] informed the AD impairments 
demonstrated in panel B
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Sect.  "Neurodegenerative disease biomarkers and their 
relationship to sleep").

Elevated tau has been observed in young individu-
als with OSA [77], and brain-derived exosomes contain 
higher levels of total tau, pT181, and Aβ in those with 
OSA and MCI, compared to OSA alone (age range: 
35–65) [78], indicating potentiation of NDD exosome-
mediated spread of proteinopathy with sleep distur-
bances [79–84]. Taken together, these reports indicate an 
association of tau with sleep that likely contributes to the 
proteinopathy-sleep bidirectional relationship observed 
in AD.

Conversely, other studies have demonstrated no 
changes in total or phosphorylated tau (or Aβ) with 
5 days of partial sleep disruption in healthy 20–40-year-
olds; total and REM sleep were lost, yet SWS was unim-
paired in this paradigm [85], which may have preserved 
clearance mechanisms such as glymphatics. Overnight 
interventions in healthy volunteers (aged 35–65), to pre-
vent SWS for one night, also did not show any significant 
changes in the levels of CSF tau but had elevated Aβ. 
Poorer actigraphic measures of sleep at home over 6 days 
associated with higher CSF tau levels in these partici-
pants [61]. It is important to note that these two experi-
ments were conducted in young and middle-aged healthy 
participants, and with increasing age and in NDD, endog-
enous clearance mechanisms lose efficacy [1], which will 
contribute to higher protein accumulation after sleep 
loss.

EEG alpha waves (~ 7–12 Hz) are signatures of rest and 
quiet wakefulness [74], and have been shown to relate to 
AD-related tau pathology. In subjective cognitive decline, 
MCI and AD participants in their 60  s, dampened EEG 
alpha power and synchronization correlated with increas-
ing levels of CSF total and phosphorylated tau [86], and 
of CSF phosphorylated tau with a lower peak alpha fre-
quency in the power spectrum of older adults (mean 
age ~ 70) [87]. When stratified by Aβ (11C-PIB) and by tau 
PET (18F-MK-6240) positivity, the peak alpha frequency 
slowed from ~ 9.5  Hz to ~ 8  Hz in positive groups [87]. 
In cognitively normal older adults (mean age ~ 75), CSF 
total and phosphorylated tau, and most notably in those 
with high p-tau:Aβ ratio, was correlated with an increas-
ing proportion of theta (analyzed in 4–8 Hz) waves, but 
no changes in delta, alpha or beta frequency bins [88], 
which may be due to overall EEG slowing. Proteinopathy 
in the rest-active ‘default mode network’ [89, 90] and tau 
mediated neuronal suppression [5] may be contributing 
factors to EEG slowing and impairments in alpha waves. 
Furthermore, alpha wave effects may stratify by sex: alpha 
power and total tau negatively correlated in male but not 
female participants with MCI (mean age ~ 75) [91], and 
greater resting state alpha EEG activity was reported in 

female vs. male healthy older adults, as well as in MCI 
and AD (mean age ~ 69–70) [92]. These results indicate 
the potential for EEG alpha as a non-invasive AD bio-
marker, and further research may investigate if impaired 
alpha wave activity in AD can attenuate the beneficial 
effects of quiet wakefulness.

The connection of tau with sleep loss and EEG altera-
tions are supported by preclinical models. In tau knock-
out mice, there is reduced delta power, NREM and 
total sleep time, and increased state transitions [93]. In 
P301S (at advanced stages) and rTg4510 tauopathy mice 
there is reduced delta and theta EEG power associating 
with sleep alterations [94, 95], and in an FTD-tauopathy 
mouse model EEG alpha power during the wake-state 
is decreased [96] indicative of an overall EEG slowing 
related to tau. Electrophysiological slowing has been 
shown in rTg4510 cortical neurons, with impairments 
in NREM sleep UP and DOWN states: prolonging of 
latency and intervals in UP state and of total DOWN 
state activity [9]; critically, balance of UP and DOWN 
states is related to the memory consolidation benefits of 
sleep [65].

In tauopathy and AD models, sleep deprivation 
increases tau deposition into paired helical filaments in 
3xTg AD mice [97], and tau spread in P301S mice, with 
hippocampal injection of human tau fibrils, including 
to LC, involved in arousal in the sleep–wake cycle [29, 
98]. Finally, Tg4510 tauopathy model mice exhibit tau 
inclusions in the suprachiasmatic nucleus (SCN) with 
arrhythmic expression of PER2 and BMAL1 clock pro-
teins [99]. Tau-deficient Drosophila also exhibit circa-
dian rhythm disruption with abnormal activity patterns, 
impaired neuronal remodeling in pacemaker neurons, 
and increased circadian clock proteins [35], and Dros-
ophila expressing 4R tau have circadian arrhythmicity 
and disrupted sleep [100]. In sum, tau pathology and loss 
of function in AD is exacerbated by sleep disruptions, 
and in turn impairs sleep via circadian arrhythmicity and 
impairments in sleep-regulating neuronal populations.

Neurodegenerative disease biomarkers and their 
relationship to sleep
Plasma biomarkers of NDD and of sleep impairment
Plasma biomarkers are a potential method for early 
detection of sleep-related neurodegeneration, but gold 
standards for disease diagnosis remain to be established. 
Headway has been made in AD, where Aβ42, Aβ40, 
Tau-181, Tau-217 and Tau-231 are all showing promise, 
along with the inflammatory marker glial fibrillary acidic 
protein (GFAP) and neurodegenerative marker neuro-
filament light chain (NfL) [101]. The first three track 
with sleep disorder changes in CSF levels of Abeta and 
Tau-181, indicating a direct relationship between sleep 
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disorder and neurodegeneration [102]. Apnea is also 
associated with increased plasma Aβ42/Aβ40 ratio and 
phosphorylated-tau [102–104]. Biomarkers of neurode-
generation may represent altered sleep regulation includ-
ing increased plasma orexin A in plasma in AD [105] and 
reduced plasma melatonin in Huntington’s disease (HD) 
[106]. Taken together with the aforementioned increase 
in AQP4 in CSF [43], this suggests dysfunction of sleep-
related pathways in NDDs.

While the majority of biomarkers in relation to sleep 
dysfunction focus on Alzheimer’s-related proteinopa-
thies, there are other sleep-related biomarkers of disease, 
including plasma metabolomic [107] and lipidomic [108] 
profiles. Plasma TNF-α and IL-10 were significantly ele-
vated in REM sleep behavior disorder (RBD) (prodromal 
to PD) relative to age-matched controls and to decreased 
IL-6/IL-10 and IL-8/IL-10 levels [109]. TAR DNA-
binding protein 43 (TDP-43) and chromosome 9 open 
reading frame 72 (C9orf72) aggregates are also seen in 
hypothalamic and SCN neurons that regulate the sleep–
wake cycle [110–112]. Development of TDP-43 fluid and 
PET biomarkers is an active area of research [113–116], 
and may prove beneficial in amyotrophic lateral sclero-
sis (ALS)/FTD, limbic-predominant age-related TDP-43 
encephalopathy (LATE), and in AD. It is expected that 
the identification of TDP-43 will take prominence along-
side synuclein given that NDDs often have multiple pro-
teinopathies [117–121].

AD‑associated mixed neuropathology in the interaction 
of sleep and proteostasis
Table  1 expands our discussion of the role of NDD 
proteinopathies in sleep disturbances to α-synuclein, 
TDP-43, fused in sarcoma (FUS) and Huntingtin (Htt). 
TDP-43, along with tau, is the predominant proteinopa-
thy in FTD and ALS, both of which present with sleep 
disturbances [122, 123]. Loss of orexinergic neurons 
and detection of TDP-43 inclusions has been reported 
in the hypothalamus of ALS patients; though these 
inclusions likely occur at later stages (III and IV) when 
there is widespread pathology [111, 112, 124]. Dipeptide 
repeat inclusions from expansion in C9orf72, a common 
genetic cause of ALS, have been observed in pinealocytes 
and SCN vasoactive intestinal polypeptide (VIP) neu-
rons. These neurons regulate circadian rhythms and did 
not contain phosphorylated TDP-43 inclusions [110], 
suggesting TDP-43 may not be a significant driver of 
ALS-associated sleep deficits; whereas C9orf72, ALS-
associated motor and breathing impairments could 
be better indicators of sleep loss in patients [122]. For 
behavioral variant FTD, there is evidence for a potential 
relationship of orexin dysregulation and the sleep distur-
bances in these patients (reviewed in [123]), yet similar 

to ALS, further work is needed to delineate the roles of 
TDP-43, tau and FUS pathology, and their homeostasis 
(see Table 1), on hypothalamic function and sleep.

LATE and DLB are common mixed pathologies in peo-
ple with AD and present in 1/3 to 1/2 of patients [117–
119]. Interestingly, Lewy body pathology but not TDP-43 
associates with sleep impairments in AD patients [119]. 
This is not surprising given the prevalence of RBD in 
synucleinopathies such as PD and DLB ([126]; Table  1). 
The presence of these pathologies may confound group-
ing AD phenotypes as specific Aβ- and/or tau-driven 
pathologies, but present an exciting avenue for elucidat-
ing predictive factors of patient progression or resilience 
[151], as biomarkers are developed.
Sleep biomarkers: EEG, polysomnography, and wearables 
(actigraphic and accelerometric devices)
Biomarkers of sleep disruption and risk of NDDs like AD 
and PD remain underappreciated, despite the potential 
benefit for earlier intervention and reduction of sleep 
disruption. The most reliable biomarker of sleep disrup-
tion is EEG and identification of sleep stage, resting and 
wake cycles during a sleep cycle. Further daytime sleep-
ing, including episodes of quiet wakefulness may indicate 
poor sleep quality. Brain regions with highest soluble 
and deposited Aβ levels, such as ‘default mode network’, 
exhibit high neuronal activity during quiet wakefulness 
[89, 90]. Critically, the usage of EEG in NDD and in pre-
clinical research is a promising approach to define pre-
dictive biomarkers of sleep and cognitive dysfunction in 
an array of NDDs, including AD, FTD and PD [152–158].

Newer wearables have advanced sleep detection and 
may be useful in monitoring RBD, including in indi-
viduals prodromal to PD or DLB [159], with weara-
bles providing reasonable measures of I < O index 
(comparing nocturnal and diurnal motor activity) speci-
ficity (89%) and sensitivity (63%), and of wake bouts 
(sensitivity = 96%), while EEG identified micro-sleep 
instability better (sensitivity, specificity > 75%) [159]. New 
wearables have also been compared to PSG/EEG record-
ings with accuracies of 0.51 to 0.53 in detecting REM 
sleep, 0.52 in detecting light sleep, and 0.79 to 0.83 in 
detecting deep sleep [160], indicating that while there is 
promise, the algorithms on wearables like the Oura ring 
still require greater accuracy for use as a diagnostic tool. 
Nevertheless, such instruments hold promise in iden-
tification of diseases and health related activity, includ-
ing PD [161]. The use of wearables shows promise as the 
algorithm utilizes additional information from the wearer 
to determine REM and other sleep stages. For example, 
during REM, autonomic changes include surges in heart 
rate and blood pressure, irregular breathing and loss 
of thermoregulation [162], data that can be measured 
from the device. The development of digital health and 
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wearables are currently in their early stages but show 
promise for AD, DLB and PD [163, 164], especially as 
e-biomarkers of sleep quality. The potential is evident, 
though a possible limitation in such devices is compli-
ance and use by individuals with cognitive impairment.

Sleep‑regulating centers and neurodegeneration
In this section we present an overview of the sleep–wake 
circuitry, focusing on neuromodulatory (noradrenergic, 
serotonergic, cholinergic), hypothalamic, GABAergic, 
and glutamatergic sleep-regulation, and relationships 
to sleep impairments and neurodegeneration in AD, 
summarized in Fig.  2. Sleep–wake circuitry has been 
reviewed comprehensively in previous work, including 
pathways we do not fully capture herein, such as dopa-
minergic neurons in the ventral tegmental area, other 
brain stem and midbrain GABAergic and glutamatergic 
neuronal populations, and the thalamus [165–171]. It is 

important to note that experiments probing sleep–wake 
circuitry have been primarily conducted in rodents, 
with lesions or activation by chemogenetic and optoge-
netic approaches determining the sleep-state altera-
tions; though the regions and neuronal connections 
discussed herein are conserved in humans or have human 
homologues.

Locus coeruleus – noradrenergic (wake‑active, arousal, 
REM‑inhibiting)
One of the earliest regions affected by hyperphosphoryl-
ated tau and neurofibrillary tangles, preceding EC, and 
hippocampal accumulation, is the LC. LC accumulates 
tau rapidly between Braak stage 0 and I, with almost all 
remaining neurons containing tau by Braak stage VI [3, 
173–175]. Aβ is seen in later stages in the LC [15], sug-
gesting tau as a selective driver of impairments in the LC. 
A recent report on the localization and morphology of 

Fig. 2  Summary of the sleep–wake circuitry and impact on NREM, REM and wake states. Briefly, neuromodulation from cholinergic (REM-active, 
wake-active), noradrenergic (wake and arousal) and serotonergic (in general wake-promoting, neuromodulatory sleep-promoting functions) 
neurons signals to the hypothalamus and ascending pathways to regulate the sleep–wake balance. Hypothalamic orexinergic and histaminergic 
neurons promote wake, and MCH promotes sleep. GABAergic (VLPO, POA, PZ) and glutamatergic (PB, BF, PPT/LDT) neurons facilitate sleep- and 
wake-states, respectively; though GABA can be wake-promoting in certain instances. See Sect. "Sleep-regulating centers and neurodegeneration" 
for further details [165–172]. Regions are not to scale nor laid out anatomically. Arrows indicate activation signal to the efferent region and flat 
ends indicate inhibitory signal. Synaptic connections are colored by behavioral state: black dashed lines (ascending neuromodulatory activity 
with broad effects), red (wake and/or arousal), light red (wake- and REM-active), and blue (NREM and/or SWS). Abbreviations: acetylcholine (ACh); 
basal forebrain (BF); dorsal raphe nucleus (DRN); glutamate (glut); histamine (hist); lateral hypothalamus (LH); median preoptic nucleus (MnPO); 
melanin-concentrating hormone (MCH); noradrenaline (NA); non-rapid eye movement sleep (NREM); parabrachial nucleus (PB); parafacial zone 
(PZ); parvalbumin (PVB); pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT); preoptic area (POA); polysomnography (PSG); rapid eye 
movement (REM); serotonin (5-HT); slow wave sleep (SWS) somatostatin (SST); suprachiasmatic nucleus (SCN); tuberomammillary nucleus (TMN); 
vasoactive intestinal polypeptide (VIP); vasopressin (VP); ventrolateral preoptic area (VLPO). Created with BioRender.com
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hyperphosphorylated tau (AT8 +) LC neurons indicates 
the potential of dendritic spread of tau to LC-connected 
regions from as early as Braak stage 0, especially from the 
dorsal LC to neocortex and hippocampus [176]. Through 
connections with the thalamus, cerebral cortex, basal 
forebrain (BF), hippocampus and hypothalamus, includ-
ing inhibition of sleep-promoting GABAergic neurons, 
LC noradrenergic neurons promote arousal and wakeful-
ness and regulate memory [18, 168, 171, 175, 177], con-
comitant with the early onset of AD sleep deficits.

Noradrenergic firing is low during NREM and quies-
cent during REM sleep, which is mediated via GABAergic 
inhibition from hypothalamic ventrolateral preoptic area 
(VLPO) and median preoptic nucleus, and hypothalamic 
galanin- (preoptic area (POA)) and melanin-concentrat-
ing hormone (MCH)-neuronal inhibition [168, 170, 171]. 
Other hypothalamic inputs include orexin, indirect acti-
vation from wake-promoting histaminergic neurons, and 
from the SCN via the dorsomedial hypothalamic nucleus 
[168, 170]. Noradrenergic outputs include inhibition 
of VLPO neurons, facilitation of orexinergic-mediated 
wakefulness, and increased cortical pyramidal neuron 
excitability [168, 170, 171] (Fig. 2). In sum, LC noradren-
ergic neurons confer a neuromodulatory tone on sleep-
circuitry, promoting arousal and shifting the balance 
towards the wake state. Noradrenergic vulnerability to 
tau pathology and autophagic failure [178], as well as its 
importance in sleep and circadian impairments in AD, is 
an emerging area of NDD research.

Dorsal raphe nucleus – serotonergic (generally 
wake‑promoting and REM‑inhibiting, neuromodulatory 
effects can be sleep‑promoting)
Serotonergic signalling has long been known to con-
trol sleep–wake circuitry, with broad, neuromodulatory 
effects throughout a variety of brain regions and neu-
ronal populations (reviewed in [169, 171, 179]; seroto-
nin circuits are of interest in AD (reviewed in [179, 180]. 
Serotonin neurons are mainly in the dorsal raphe nucleus 
(DRN) and receive inhibitory afferents which regulate 
sleep–wake control, including from MCH hypotha-
lamic neurons, and via reciprocal POA(GABA, galanin)-
DRN(serotonin) inhibitory activity [168]. Serotonergic 
neuronal efferents include the thalamus, hypothalamus, 
cerebral cortex, BF, other brain stem nuclei, and, notably, 
inhibit REM generating cholinergic neurons in peduncu-
lopontine and laterodorsal tegmental nuclei (PPT/LDT) 
(Fig.  2). This activity shifts the sleep–wake balance pri-
marily towards wake-state with REM inhibition, though 
serotonin does exert sleep-promoting effects depend-
ent on the 5-HT receptor subtype [171]. Critically, sero-
tonin activity is reduced through NREM and more so 
REM sleep [168, 171], similar to what is observed for 

noradrenaline. In sum, serotonin is a neuromodulator 
and sleep regulator with intimate linkage to the hypothal-
amus and cholinergic sleep–wake circuits.

Basal forebrain, PPT/LDT – cholinergic (wake‑ 
and REM‑active) & parabrachial nucleus – glutamatergic 
(arousal‑promoting)
The BF is one of the major hubs of cholinergic neurons 
which exert broad, neuromodulatory effects. This popu-
lation of neurons and their efferents are lost in AD form-
ing the core tenet of the cholinergic hypothesis of AD 
and the therapeutic usage of acetylcholinesterase inhibi-
tors [181]. Critically, BF cholinergic neurons are sleep–
wake regulators (as well as regulating other behaviors 
including memory and attention), with higher activity 
linked to wakefulness and to REM sleep, and lower activ-
ity during NREM [168, 169]. Extensive cholinergic inner-
vation of the cortex indirectly excites pyramidal neurons, 
with closely linked cortical-BF oscillatory activity espe-
cially during wake and REM sleep [169]. This promotes 
high frequency cortical neuronal activity, and suppresses 
low frequency, slow delta waves [169]. Notable inputs to 
cholinergic BF neurons include orexinergic [170], seroto-
ninergic activity with which depolarization or hyperpo-
larization depends on the 5-HT receptor subtype [171], 
as well as innervation from glutamatergic neurons in the 
parabrachial nucleus [166, 168] (Fig. 2). Parabrachial glu-
tamatergic neurons are wake-promoting and provide a 
major source of arousal from the brain stem [166, 168], 
and can mediate interoception-related arousal [169]. 
Other glutamatergic populations have been implicated 
in the sleep–wake cycle (reviewed in [166, 168, 169]. The 
parabrachial nucleus-BF-cortex circuit is critical in pro-
moting the wake-state (Fig. 2).

Within the BF, parvalbumin GABAergic and gluta-
matergic neurons are also wake- and REM-active and 
interconnected with local cholinergic neurons [168, 182]. 
Glutamatergic neurons synapse on cholinergic and par-
valbumin neurons, and cholinergic connects directly to 
parvalbumin [168]. Those three neuronal populations are 
also each inhibited by the neighboring, sleep-promoting 
somatostatin (SST) GABAergic neurons [168, 182], indi-
cating the complexity of the BF circuitry as a sleep-regu-
lator (Fig. 2).

PPT/LDT cholinergic neurons function similarly to 
those in the BF, with excitatory efferents on thalamocor-
tical neurons yet notably low cortical innervation [168, 
169]. PPT glutamatergic neurons also innervate the BF 
and have been shown to cause extensive wakefulness 
upon chemogenetic activation in mice, and more NREM 
sleep when inhibited [183] (Fig. 2). Furthermore, activa-
tion of PPT cholinergic neurons results in reduced EEG 
slow waves in NREM with an increased light:deep NREM 
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ratio, and activation of GABAergic neurons reduced 
REM [183].

Hypothalamus – orexinergic, histaminergic (arousal, 
wake‑active), and MCH (sleep‑promoting, REM‑active)
In the hypothalamus, histaminergic (tuberomammillary 
nucleus), orexinergic and MCH (lateral hypothalamus) 
neurons are impacted in AD and accumulate tau pathol-
ogy [18]. These neuronal networks are critical regulators 
of the sleep–wake cycle balancing arousal (histaminer-
gic), wakefulness (including orexinergic-based reduced 
REM and SWS), with induction of sleep from REM-
active MCH neurons [18, 184, 185], and receive input 
from neuromodulatory brain stem nuclei (noradrenaline, 
serotonin and acetylcholine; [168, 169, 171]. Histaminer-
gic and orexinergic wake-promoting neurons are lost in 
AD patients, yet MCH neurons seem to be preserved and 
resistant to tau accumulation [18, 186], indicating a mis-
balance in hypothalamic sleep–wake control, especially 
considering orexin-MCH reciprocal inhibition [168] 
(Fig. 2). In AD patients, orexinergic neurons are reduced 
while CSF orexin is often reported to be increased, sug-
gesting a complex, perhaps compensatory, mechanism 
for dysregulated sleep–wake signals (loss of nighttime 
sleep and increased daytime napping) [184, 187]. Nota-
bly, orexinergic neurons decrease with age in rodents 
[188, 189], with hippocampal- and LC-projecting orex-
inergic innervation depleted in aged rats and macaques, 
respectively [190–192]. Further implications of sleep- 
and wake controlling neuronal impairments in AD with 
regards to influence of tau are reviewed in [18].

Sleep restriction in rodents leads to robust cell loss: LC, 
hypothalamus, medial prefrontal cortex, and CA1 and 
dentate gyrus hippocampal layers exhibit significant loss 
ranging from a ~ 1/4–1/2 the number of neurons [193–
196]. Interestingly, LC noradrenergic, and hypothalamic 
orexinergic neurons decreased with chronic intermittent 
sleep loss, but not neighboring MCH neurons, and all 3 
neuronal populations exhibited reduced density of axonal 
projections [196]. These effects were sustained after a 
4-week recovery period, with the exception of a resto-
ration of MCH projections to baseline levels, indicating 
a long-lasting, chronic effect that can impact balance of 
sleep–wake cycles and potentially be further exacerbated 
in individuals presenting with AD neuropathology [196].

Suprachiasmatic nucleus of the hypothalamus (circadian 
rhythm generator)
The SCN is a structure in the anterior hypothalamus 
which generates behavioral rhythms via afferents on 
other hypothalamic nuclei, such as the sub-paraven-
tricular zone and dorsomedial hypothalamic nucleus 
which then relays to the LC to impact arousal [168, 170] 

(Fig.  2). The majority of SCN neurons are GABAergic 
with co-expression of hormones including VIP and vaso-
pressin [168, 169]. The molecular clock and light stimuli 
modulate the activity of SCN neurons which are more 
active during day and dampened during nighttime [168]. 
Critically, SCN neuronal loss [197] and prominent tan-
gle formation with minimal plaque pathology [198], has 
been documented in AD patients, and the SCN has been 
linked to circadian disruptions in NDDs including AD, 
PD and HD [199–201]. Given the vulnerability of SCN 
VIP neurons to inclusions from C9orf72 expansion [110], 
ALS and FTD may be considered on this list as well [202].

GABAergic circuitry (in general sleep‑promoting, 
NREM‑active)
Recent work suggests that beyond the modulatory tone 
from monoaminergic, cholinergic and orexinergic neu-
rons, the pivotal framework for the sleep–wake cycle 
arises from fast neurotransmitters such as glutamate 
and GABA [166, 167]. GABAergic interneurons pro-
mote sleep via inhibition throughout the brain [74] but 
are impaired across AD progression [203]. The VLPO 
and median preoptic nucleus of POA contain GABAergic 
neurons that inhibit wake-promoting neurons, including 
those in the hypothalamus (orexinergic and histaminer-
gic), DRN, LC and parabrachial nucleus. Galaninergic 
neuronal release from the POA can also inhibit histamin-
ergic and noradrenergic neurons (reviewed in [166, 168]). 
Input into the VLPO includes inhibition of sleep-pro-
moting neurons from cholinergic, noradrenergic and, less 
so, serotonergic neurons [168], as well as histaminergic 
innervation [204] (Fig. 2). Critically, the POA and VLPO 
in particular, strongly initiate sleep, with lesions of the 
VLPO in rodents contributing to ~ 40% loss of sleep time 
[166]. The intermediate hypothalamic nucleus is the likely 
human homologue of the VLPO, in which AD patients 
exhibit a loss of galaninergic neurons with the number of 
neurons significantly associating with the degree of sleep 
impairment [205]. The parafacial zone of the medulla has 
also been shown in mice to be a key promotor of SWS 
and delta wave EEG via GABAergic-mediated inhibition 
of parabrachial glutamatergic neurons [206]. There are 
also non-sleep-promoting GABAergic neurons, includ-
ing the aforementioned BF parvalbumin neurons, as well 
as lateral hypothalamic GABAergic neurons that can be 
wake- and REM-active and inhibit sleep-promoting tha-
lamic and POA/VLPO neurons [166, 207–209] (Fig. 2).

Loss of cortical GABAergic tone has been implicated 
in the impairment of sleep-dominant slow wave oscilla-
tory activity (reduced power without alterations in the 
oscillatory frequency) in Aβ-driven mouse models, and 
acute administration of Aβ induces the same electro-
physiological impairment [64]. Optogenetic activation 
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of cortical excitatory neurons rescues slow wave oscilla-
tions, restores GABA receptor levels and, interestingly, 
prevents continued accumulation of Aβ plaque [64]. This 
data demonstrates the dynamic interaction between neu-
ronal circuitry, sleep and neuropathology in AD. During 
sleep deprivation in mice, hippocampal SST inhibitory 
interneurons are activated by cholinergic and potentially 
orexinergic inputs, and thereby suppress local excitatory 
activity and impair memory consolidation [210]. Nev-
ertheless, inhibitory interneurons demonstrate higher 
levels of the autophagy activator BAG3, shown to be pro-
tective against tau accumulation [211]. It remains to be 
elucidated how SST autophagy resilience, yet vulnerabil-
ity to Aβ and tau in AD [211–213], connects to enhanced 
inhibitory gating which would occur during extended 
wakefulness [19, 210].

Overall, these sleep-regulating regions and neurons 
are important to consider in the sleep-proteostasis inter-
action as their differential vulnerability or resilience to 
proteinopathy can impact regulation of the sleep–wake 
balance and may therefore potentiate AD progression 
and protein accumulation. Future work can examine the 
connection of these brain regions with bulk protein clear-
ance and these neuronal populations with their suscepti-
bility to failure of cellular proteostasis.

Sleep impairment accelerates proteinopathy
Sleep is a broad, multicellular phenomena regulated 
by homeostatic processes that have a cellular/molecu-
lar level regulation, wherein a buildup of molecules are 
proportionate with the duration of time spent awake. 
An undesirable quantity of such molecules and proteins 
accumulate in correspondence to an extended duration 
of wakefulness and when sleep is fragmented [214–218], 
leading to pathological spread in NDD.

Sleep loss increases Aβ and tau

One night of sleep loss increases Alzheimer’s‑related 
proteinopathy in healthy adults
CSF Aβ and tau are lower in the morning after normal 
sleep; however, after even one-night of sleep restriction 
clearance is impaired in middle-aged adults (age range: 
40–60) without cognitive impairment, noted by increased 
morning CSF levels for Aβ42, but not Aβ40 or tau [219]. 
Conversely, morning total tau in plasma increases by 
1.8% from evening levels, and, strikingly, by 17.8% after 
a night of sleep deprivation in young men (~ 22  years 
old), with no Aβ plasma changes [220]. Furthermore, 
Aβ 18F-florbetaben PET signal increases after a night of 
sleep loss in healthy adults (age range: 22–72), especially 
in the hippocampus [221], indicating relevance to driving 

AD progression and memory impairments. PET imaging, 
especially with tau tracers, may prove critical to exam-
ining effects of acute sleep loss on proteinopathy. Work 
from Holth [29] and Lucey [222] and colleagues, demon-
strated ~ 30% increased CSF Aβ and > 50% increased CSF 
tau in healthy adults (30–60 years old) with one-night of 
sleep deprivation.

After five consecutive nights of partial sleep depriva-
tion in healthy adults (age range: 20–40), a 27% increase 
in CSF orexin concentrations was observed, without 
changes in amyloid, astroglial, or neurodegeneration 
biomarkers. Notably, there was reduced time spent in all 
sleep stages except for SWS [85], and we speculate that 
residual SWS when sleep is only partially deprived pro-
motes protein clearance, protecting against increased 
amyloid which has been observed after total acute dep-
rivation [219, 221]; though the healthy young and mid-
dle-aged adults in these studies likely exhibit greater 
protein clearance efficiency than aged individuals and 
AD patients.

Glymphatic clearance
Brain clearance of a magnetic resonance imaging tracer 
was reduced immediately following one-night total 
sleep deprivation in adults (average age ~ 42), and per-
sisted even after sleep was restored [223]. This depriva-
tion likely reduced glymphatic brain clearance which 
is regulated by neuronal activity, and enhanced during 
SWS [27, 224, 225]. Glymphatic clearance is one of two 
mechanisms of interstitial fluid (ISF) clearance from 
the brain which likely work in consort, the other being 
the periarterial drainage pathway [226, 227]; though the 
relationship of glymphatics with sleep is undeniable and 
therefore is a critical mechanism to consider in the sleep-
proteostasis axis and for the clearance of Aβ and tau [27, 
29, 225, 228, 229].

Glymphatics is a pathway of bulk fluid exchange in 
which CSF is pumped into the brain from the subarach-
noid space, first along the cortical pial arteries. Arterial 
vasomotive forces move CSF into deeper brain regions 
in the periarterial Virchow-Robin space, and its trans-
port across the blood–brain barrier (BBB) is mediated by 
AQP4 channels on the endfeet of astrocytes which encap-
sulate the brain vasculature. Following CSF-ISF exchange, 
fluid efflux occurs along the perivenous space to the 
dural lymphatic system, facilitating the brain clearance 
of extracellular metabolites and solutes [224]. During 
SWS, the interstitial space increases by 60% supporting 
higher rates of glymphatics-mediated Aβ clearance [27], 
yet during wake or sleep deprivation clearance is reduced 
with 90–100% higher ISF tau in mice [29] (Fig. 3a). Glym-
phatic CSF influx significantly correlates with neuronal 
signals of SWS: low frequency, high-amplitude delta 
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Fig. 3  Proteostasis of Aβ and tau is disrupted by Alzheimer’s-related sleep loss, driving proteinopathy, neuronal network dysfunction and cognitive 
impairment. Sleep is intimately linked to homeostatic processes that control protein accumulation, and when disturbed, can exacerbate and 
trigger proteinopathy. a Shows decrease in SWS and a concomitant decline in the metabolite clearance which is usually highest during SWS. 
Glymphatics involve brain influx of cerebrospinal fluid (CSF), travelling by bulk flow along periarterial spaces, which crosses the blood–brain barrier 
(BBB) via an astrocytic AQP4-mediated process, mixes with brain interstitial fluid (ISF), metabolites and solutes, and is cleared along perivenous 
spaces, driven by vasomotive forces. Bulk CSF/ISF efflux along veins drives metabolite clearance to dural lymphatic systems. Acutely, loss of SWS 
impairs glymphatic-mediated clearance of β-amyloid (Aβ) and tau, which chronically can feedback in cerebral amyloid angiopathy (CAA), tortuosity, 
enlarged perivascular spaces, and reduced blood flow, furthering glymphatic disruptions and increasing extracellular protein levels [226, 227]. b 
Sleep disturbance, circadian arrhythmicity, age and AD pathology all impact cellular proteostasis, contributing to an in general overactivation to 
clear protein; however, in cases of disease, proteostasis is overwhelmed and this activation exacerbates an already damaged system. BiP, and active 
levels of PERK, IRE1 and ATF6 are increased with sleep loss indicating UPR recruitment, which is insufficient to clear misfolded protein in aged- and 
diseased-states (indicated by red dashed line). Autophagy activation via Beclin-1 and atg4a, leads to nucleation and upregulated formation of 
autophagosomes (grey vacuoles), yet with a failure of autophagic flux there is reduced lysosomal (red vacuoles) fusion (indicated by red line). 
Notably, this can reduce Aβ and tau degradation, impart neurodegeneration through abundant axonal and dendritic autophagosomes, and 
promote proteinopathy through exosomal release of autophagosomes, as is seen in Alzheimer’s disease (AD) progression. Autophagy is regulated 
on a circadian cycle, and further impaired when this rhythm is disturbed. UPS failure occurs with disease state contributing to higher levels of 
intracellular protein that the ALP is unable to compensate for (indicated by red dashed line to p62). Dysregulated UPS-mediated degradation 
(indicated by red dashed line) of PERIOD proteins (including PER1 and PER2) may further circadian alterations. c During periods of prolonged 
wakefulness, higher frequency neuronal activity without restorative sleep promotes Aβ and tau cell-to-cell spread. Because of elevated synaptic 
strength, the neuronal signal:noise ratio decreases and synaptic plasticity saturates, leading to non-specific network activity [69]. Without rest, 
these potentially aberrant neuronal connections, in consort with accumulation of extra- and intracellular uncleared protein, exacerbate neuronal 
dysfunction, and cognitive processes such as memory can become impaired. d Finally, memory consolidation is impaired from loss of REM and 
NREM stage 2 and 3 sleep, contributing to transient memory loss. Neuronal activity of NREM UP- (i.e., spindles, sharp-wave ripples) and DOWN- (i.e., 
delta waves, K-complexes) states and REM theta oscillations consolidate memory circuits formed throughout the day [65–68]. Chronically, 
impairments in proteostasis can progress to rampant accumulation of Aβ and tau in plaques and tangles, respectively, increasing disease spread 
and neuronal network dysfunction, all of which can further impair sleep and drive cognitive decline. Red text indicates impairments/decreases in 
AD and sleep disruption, green text indicates increases with AD and sleep disruption. Created with BioRender.com
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waves and a lower heart rate; whereas a negative corre-
lation was observed with high-frequency beta waves in 
mice, common in wake state, and no significant relation-
ships with alpha or theta waves, present in wake-state, 
REM and NREM stage 1 sleep [74, 230].

These results demonstrate the intimate relationship of 
glymphatic-mediated clearance of Aβ and tau with sleep, 
and the positive-feedback-loop that can occur as sleep 
is lost in AD. Mounting vascular impairments occur in 
AD, including cerebral amyloid angiopathy, vessel tortu-
osity and rigidity, reduction in cerebral blood flow, and 
enlargement of periarterial and perivenous spaces; all 
of which impair glymphatic clearance, and are further 
impaired by the failure of glymphatic clearance with an 
abundance of Aβ and tau [226, 227] (Fig. 3a).

Interestingly, diurnal fluctuations in glymphatic clear-
ance show regional differences in the rat brain, with large 
sleep-associated increases in brain regions involved in 
circadian rhythm regulation, including the SCN and lat-
eral hypothalamus [231]. Critically, acute sleep depriva-
tion significantly enhances Aβ and tau which can further 
impair sleep, and lead to persistently impaired protein 
clearance [219–221, 223].

Sleep loss dysregulates protein degradation
Mechanisms of protein degradation, in particular 
autophagic-lysosomal pathway (ALP), ubiquitin proteas-
omal system (UPS) and unfolded protein response (UPR) 
are functionally intracellular. However, this does not 
preclude the effect of these processes on sleep, and vice 
versa, since impaired proteostasis across a neuronal pop-
ulation or brain region can exert network effects [232]. 
For example, Fu and colleagues demonstrate cell- and 
region-specificity of EC excitatory neurons to autophagic 
deficits in human brain tissue, facilitating their vulner-
ability to tau [211] and recently, failure of neuronal autol-
ysosome acidification was identified as a precursor to 
Aβ plaque formation in AD patients and mouse models 
[233]. These neurons have impaired autophagy, but con-
sidering the specificity of this event across a neuronal 
population, the effect can cause a spread of pathologi-
cal proteins at the network level, including during sleep 
disruption. Individualistic and synergistic effects of Aβ 
and tau on neuronal network dysfunction [5, 6], and 
cell-to-cell spread of proteinopathy [234] further com-
pound the effect of proteostasis failure throughout the 
brain. We propose the interactions of sleep and circadian 
rhythm with autophagy, UPS and UPR are critical mech-
anisms driving Aβ and tau proteinopathy from early AD 
stages. Figure  3 brings out the relevance of the interac-
tion of sleep with cellular proteostasis mechanisms in AD 
(Fig. 3b), and how mounting pathology impacts neuronal 
circuitry (Fig. 3c) and cognitive decline (Fig. 3d).

Autophagy and sleep impairment
One of the earliest features of disrupted autophagic flux 
in AD is an abundance of autophagosomes, which accu-
mulate in neuronal cytoplasm, axons, and most promi-
nently in dystrophic neurites. There is a failure to clear 
autophagosomes, preventing degradation of Aβ, tau 
and other proteins within [235]. As autophagic defi-
cits mount, so does neuronal damage, contributing to 
AD progression [1, 34, 236]. Furthermore, uncleared 
autophagosomes and autolysosomes accelerate the cell-
to-cell spread of Aβ and tau via exosomal release [79–84]. 
Interestingly, disrupting sleep recapitulates AD-related 
autophagic dysfunction [237–239], and knocking out 
autophagic function is sufficient to recapitulate a neuro-
degenerative phenotype [240, 241].

Genetic manipulation of autophagic flux in drosophila 
has demonstrated the bidirectional link between sleep 
and autophagy. During sleep, autophagosomes drop 
compared to wake periods. Blocking autophagosome 
formation increases sleep, whereas blocking autolyso-
somal degradation decreases sleep [239]. In mice, acute 
sleep deprivation causes autophagosomes to accumu-
late in hippocampal neurons, with increased expression 
of LC3B, Beclin-1 and p62, indicative of recruitment of 
autophagic processes [1, 237]. Autophagic flux is dis-
rupted in mice with chronic sleep fragmentation, with 
increased autophagosomes, endosomes, and number and 
size of intracellular lysosomes [238]. This is accompa-
nied by spatial learning and memory impairments after 
acute and chronic sleep deprivation [237, 238]. Therefore, 
autophagic recruitment without lysosomal fusion and 
protein degradation occurs with mounting sleep impair-
ments, furthering proteinopathy and disease progression 
(Fig. 3b, ALP).

Interestingly, Xie and colleagues report cortical and 
hippocampal Aβ intracellular accumulations in chronic 
sleep fragmented wild-type mice, akin to observations 
in AD models [29, 238, 242]. The authors attribute this 
to a failure of normal amyloid precursor protein (APP) 
processing via the endosome-autophagosome-lysosome 
(EAL) pathway in which reduced flux through the EAL 
pathway decreases APP trafficking and clearance, facili-
tating amyloidogenic processing and Aβ accumulation 
[238, 243, 244]. These results are exciting as they demon-
strate a potential mechanistic linkage between sleep loss 
and AD proteinopathy.

Circadian rhythm of autophagy
Circadian rhythms and the sleep–wake cycle impact 
gene expression [217] and are linked to AD pathology. 
AD patients exhibit circadian arrhythmicity, measured 
in the clinic by activity/rest cycles, exhibiting delayed 
cycle phases and lower-amplitude peaks (reviewed in 
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[245]). In aged mice with a knock-out of the biological 
clock gene Per1, autophagy is impaired, and Aβ42 and 
presenilin levels are higher [246, 247]. Per genes (includ-
ing Per1 and Per2) encode the PER1 and PER2 proteins, 
often referred to collectively as PERIOD protein, which 
are essential regulators of the timing of circadian oscilla-
tions [248–251]. Critically, the circadian clock regulates 
expression of autophagic genes [26, 252–254], including 
transcription factors Nr1d1 and C/EBPβ which promote 
rhythmic expression of autophagy activators, including 
Beclin-1 and atg4a [26, 252], triggering autophagosome 
formation. In the mouse hippocampus, autophagosome-
related LC3-II, but not cytoplasmic LC3-I, exhibits a cir-
cadian rhythmicity, indicative of higher autophagosome 
formation and autophagic flux in the sleep-associated 
light phase as opposed to the dark phase [28]. This differs 
from autophagosome over-accumulation in AD, in which 
there is a failure of autophagic flux and protein clear-
ance. Notably, the ALP is regulated on a circadian cycle, 
and arrhythmicity in AD can further the already present 
autophagic deficits, akin to what occurs with sleep distur-
bances (Fig. 3b, ALP).

After chronic sleep fragmentation in mice, overall 
light phase peaks and dark phase lows of hippocampal 
autophagic flux remain, but the rhythmicity is impaired 
with abnormal changes within each phase [28]. Acute 
recovery sleep is insufficient to reverse these changes, 
and triggers increased Beclin-1 expression during the 
sleep-associated light phase [28]. Two conclusions can 
be drawn from this work to frame our understanding of 
the sleep-proteostasis interaction in AD. Firstly, sleep 
loss disrupts circadian rhythmic-regulation of autophagic 
flux, leading to increased Aβ and tau aggregation. Sec-
ondly, these deficits persist after recovery, including the 
continued, aberrant activation of an already overwhelmed 
autophagic-lysosomal system in AD by Beclin-1, indicat-
ing chronic complications for AD progression.

Unfolded protein response (UPR) is impaired with age, 
after sleep loss, and in Alzheimer’s disease
Normally tasked to clear misfolded protein, the UPR is 
overwhelmed in NDDs, and further exacerbated when 
sleep is disrupted [1, 33]. Protein kinase RNA-like ER 
kinase (PERK), inositol-requiring enzyme 1α (IRE1), and 
activating transcription factor-6 (ATF6α and β) are three 
crucial proteins that help initiate UPR and from which 
the binding immunoglobulin protein (BiP) is unbound 
in response to misfolded proteins. Chronic activation 
of UPR, especially on the PERK branch, occurs in the 
brains of AD patients and other tauopathies. AD brains 
have a heightened expression of UPR activation mark-
ers, including phosphorylated PERK, eukaryotic initia-
tion factor 2α (eIF2α), and IRE1, as well as BiP, which 

correlate with Braak stages [255–258], suggesting that 
UPR has a bearing on AD pathology at an early stage. 
There is an increase in UPR in tauopathies; and UPR 
associates with early hippocampal tau pathology in these 
disorders [259]. Furthermore, the same neurons and glia 
that display abnormal tau phosphorylation levels show a 
corresponding increase in markers of UPR activation as 
well, corroborating their linkage [259].

UPR chaperones are upregulated during wakefulness, 
or when sleep is deprived, to help mitigate endoplasmic 
reticulum (ER) stress by clearing misfolded proteins and 
reducing protein translation [21, 33]. The ER chaperone 
BiP binds to misfolded proteins to prevent aggregation 
and promote re-folding. In the mouse cortex, BiP lev-
els increase progressively as sleep is deprived [216], as a 
compensation to accumulation of uncleared protein. This 
phenomenon has been observed in drosophila as well, in 
which BiP levels rise during sleep loss and fall towards 
baseline throughout recovery sleep [218]. Increasing 
normal BiP expression, or of a dominant negative form 
which decreases BiP function, prolonged or reduced 
sleep recovery after sleep deprivation, respectively [218]. 
BiP overexpression slows UPR function [218, 260], which 
is suggestive of how chronic sleep disruption in AD 
patients can lead to  a state in which the UPR is over-
whelmed by abundant misfolded protein (Fig. 3b, UPR). 
These genetic manipulations had no effect on baseline 
sleep in the flies [218]. These data are indicative of a par-
allel UPR activation to mitigate protein accumulation 
during sleep impairment that is intimately linked to sleep 
behavior [216, 218].

Interestingly, acute sleep deprivation in young mice 
promoted protein clearance and reduced translation 
via UPR, but in aged mice led to pro-apoptotic signal-
ling [261]. Sleep and protein quality control are both 
impaired with aging [33, 262] resulting in reduced effi-
ciency of refolding aspects in UPR [261, 263–265]. This 
is evident from the undersupply in chaperone proteins in 
age related diseases and in aged wild-type rodents [261, 
266, 267], corroborating the impact that sleep quality 
and protein homeostasis have on each other [33]. UPR 
is activated in orexinergic and noradrenergic wake active 
neurons with increases in phosphorylated-PERK. This 
occurs to a greater degree in aged mice correlating with a 
decline in orexinergic and noradrenergic neuronal activ-
ity, with nuclear translocation/activation of CCAAT/
enhancer binding protein homologous protein (CHOP) 
[268]. CHOP is known to signal apoptosis in response to 
ER stress [269, 270] and to mediate sleep apnea/hypoxia-
related cellular stress and injury [271, 272].

The stress response and quality control of the protein 
homeostatic system becomes dysfunctional with almost 
all tissues of aged candidates [261, 263, 265], reviewed in 
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[273], demonstrating a complex interaction in AD and 
other neurodegenerative disorders wherein age, impaired 
proteostasis and sleep exert individual and synergis-
tic impacts on disease progression. Importantly, UPR 
chaperone-mediated treatment restores aging related 
sleep and cognitive impairments in mice [274]. Another 
UPR therapeutic target for NDDs is eIF2α which attenu-
ates global protein synthesis rates critical for memory 
and neuronal function, when it is phosphorylated by 
phosphorylated-PERK; phosphorylated-eIF2α levels are 
elevated in Alzheimer’s disease and other NDDs [275, 
276]. In vitro screening assays of clinically suitable thera-
pies identified that the anti-depressant trazodone hydro-
chloride, and one other compound (dibenzoylmethane), 
reversed the effects of phosphorylated-eIF2α on protein 
synthesis. In vivo treatment of either compound normal-
ized translation and was neuroprotective in prion and 
tauopathy models [276]. Critically, trazodone can be used 
to treat insomnia and improve sleep maintenance [277], 
further indicating the therapeutic potential of the sleep-
proteostasis interaction (reviewed in [278]).

Persistent upregulation of UPR is detrimental after 
extensive proteinopathy and sleep loss, interrupting 
protein synthesis, promoting neurodegeneration and 
exacerbating defective sleep-proteostasis positive-feed-
back-loop [1, 21]. If proteins cannot be appropriately 
folded in the ER lumen, site of protein synthesis and 
packaging, proteins are directed to the proteasome to 
avoid aggregation [279, 280]. Finally, mild ER stress can 
precondition a neuroprotective mechanism for UPR via 
recruitment of autophagic processes [1, 281]. However, 
with prolonged stress like chronic sleep deprivation, 
UPS, and ALP recruitment to compensate for UPR fail-
ure may further overwhelm cellular proteostasis.

Ubiquitin proteasome system (UPS) and sleep impairment
The interaction between UPS and sleep disruptions is not 
as well defined as with autophagy and the UPR. There 
is evidence that OSA reduces proteasomal activity via 
intermittent hypoxia [282], which contributes to protea-
somal dysfunction after neurodegeneration [1, 283]. With 
mounting UPS deficits, ubiquitination and degradation 
of PER1 and PER2 proteins, biological clock proteins 
and circadian length-regulators, become unbalanced, 
lengthening circadian rhythms [284] (Fig. 3b, UPS). Tau 
accumulation is intimately linked with proteasomal dys-
function [285]; although research is needed to elucidate 
if there is a defined tau-UPS-sleep component contribut-
ing to proteinopathy and sleep loss in AD. Importantly, 
dysfunction in UPS causes compensatory activation of 
autophagic processes, which are already aberrant in AD 
[1, 286, 287], leading to chronic deficits in the sleep-pro-
teostasis axis.

Future directions to restore the sleep‑proteostasis 
axis
Disease model: Alzheimer’s disease proteinopathy spreads 
via neuronal activity
The hypothesis that proteinopathy spread in AD occurs 
as a repercussion of neuronal activity is gaining traction 
recently [4, 288, 289], with several groups coming to the 
same conclusions using different experimental modali-
ties. Mechanistically, tau release into the extracellu-
lar space is enhanced by neuronal activity, where it can 
spread and seed pathology via cell-to-cell propagation 
[32, 290, 291]. This is observed for Aβ as well [292–294]. 
In humans, higher hippocampal activation positively cor-
relates with Aβ PET levels, and associates longitudinally 
with declining memory performance [295].

Neuronal activity is most suppressed during SWS. 
Therefore, sleep loss, increased arousals, and more time 
awake in AD is contributing to longer periods of high 
neuronal excitability, and Aβ and tau spread. Disruption 
of NREM slow wave activity was proportionate with the 
increase in the levels of Aβ in medial prefrontal cortex 
of cognitively-healthy older adults [296]. Similarly, an 
increase in tau correlates with diminished delta power 
(1–4  Hz) [60]. These studies corroborate the evidence 
for linkages between sleep, neuronal circuit disruptions, 
and Aβ and tau (Fig.  3c). The aforementioned observa-
tion of increased morning CSF Aβ levels when arousal 
was induced specifically during SWS in healthy humans 
[61] was likely driven by increased ISF Aβ during periods 
of higher neuronal activity (along with extracellular tau 
release) [61, 290, 291, 293, 294, 297]. ISF Aβ concentra-
tion is greater during wakefulness and lesser during sleep 
[297], with > 20% increased ISF Aβ and lactate levels, a 
marker of neuronal activity, during the dark- as opposed 
to the light-period in hippocampi of young Tg2576 mice 
[294]. Physiological neuronal activity dynamically regu-
lates ISF Aβ levels in vivo indicating region-specific vul-
nerability given the proclivities of plaque deposition in 
‘default mode network’ [294].

Inhibitory neurons dominate in the dampened, deep 
sleep state. Brainstem neurons balance the reciproc-
ity between NREM and REM (mostly GABAergic, with 
some evidence for glutamatergic regulators), indicating 
the importance of SWS and NREM sleep for switch-
ing to the REM state (reviewed in [168]). Serotonergic 
and noradrenergic tone is diminished through NREM 
and quiescent in REM sleep. The inhibition of serotonin 
and noradrenaline, including from hypothalamic MCH 
neurons and POA GABAergic and galanin neurons, are 
also implicated in the emergence of and maintenance of 
REM sleep [168, 170, 171]. Critically, higher rates of neu-
ronal activity associate with increased APP processing, 
which in a neurodegenerative environment with chronic 



Page 18 of 34Morrone et al. Molecular Neurodegeneration           (2023) 18:27 

stressors (i.e., oxidative stress) can further shift the bal-
ance towards amyloidogenic vs. non-amyloidogenic 
processing [298, 299]. This is supported by evidence sug-
gesting increased Aβ production during sleep impair-
ment drives higher CSF Aβ levels in healthy adults (age 
range: 30–60) [222]. Therefore, we can posit that higher 
rates of Aβ generation with loss of deep and REM sleep is 
an additional mechanism linking proteinopathy to sleep 
and neuronal activity, especially in noradrenergic and 
serotonergic neurons that are usually in a low-activity 
state during sleep, especially in REM sleep.

In an AD rodent model overexpressing human APP 
pan-neuronally and tau in the EC, the presence of Aβ 
accelerates tau accumulation and spread to the hip-
pocampus, and causes EC excitatory neuron hyperac-
tivity, with higher firing rates. Blocking higher rates of 
neuronal activity subsequently dampened Aβ and tau 
accumulation and spread [30]. This work suggests a 
disease model in which Aβ-induced hyperexcitability 
potentiates tau misfolding and aggregation, leading to 
tau-induced neurodegeneration and neuronal silenc-
ing [5, 30] (Fig.  3c). High rates of neuronal activity, as 
occurs with sleep impairments and in AD, decreases 
signal:noise, contributing to non-specific and poten-
tially aberrant synaptic connections and plasticity. This 
forms part of the synaptic homeostasis hypothesis of 
sleep, which states that the restful quality of sleep derives 
from maintaining a balance in synaptic energy usage, 
stress, metabolic demand, plasticity and activity, which 
promotes healthy neuronal and cognitive functioning 
(reviewed in [69]; Fig. 3c).

It was recently demonstrated that neuronal activity 
inversely correlates with BBB efflux receptors and core 
circadian clock gene expression in endothelial cells, 
including PAR bZip and Bmal1-dependent signalling 
[300]. The authors propose a neuronal activity-dependent 
suppression of BBB efflux in the wake-state, and poten-
tiation in the sleep-state [300], which may contribute to 
failure of Aβ clearance through these mechanisms in AD, 
when sleep is impaired and hyperexcitability occurs [5, 
19, 301, 302].

Given the significance of neuronal activity in impact-
ing proteinopathy, a recent study demonstrates that APP 
transgenic mice exhibit reduced neuronal activity in tha-
lamic reticular nucleus (TRN) bringing about increased 
sleep fragmentation and reduced SWS in comparison to 
non-transgenic littermates. A selective activation of TRN 
using excitatory DREADDs rescued the aforementioned 
deficits and thereby, the amyloid plaque load in hip-
pocampus and cortex [303]. 

Overall, these reports demonstrate that neuronal activ-
ity modulates the production, spread, clearance, and 
interaction of Aβ and tau (Fig.  3c), contributing to the 

neuronal network dysfunction and cognitive decline that 
occurs across Alzheimer’s progression. Sleep exhibits 
distinct neuronal electrophysiological signatures, includ-
ing timed switching between UP-state thalamic spin-
dles (~ 10–15  Hz) and hippocampal sharp-wave ripples 
(~ 100–250  Hz) and DOWN-state cortical delta waves 
(~ 1–4 Hz) and K-complexes (low frequency, high ampli-
tude) during NREM sleep, and hippocampal theta oscil-
lations (~ 4–10 Hz) during REM sleep. The coordination 
and timing of sleep-related neuronal activity increases 
the signal:noise ratio, strengthening memory-related 
synaptic connections (typically newly formed), and con-
ferring memory consolidation ([65–68]; Fig. 3d). In sum, 
these results suggest modulation of neuronal activity, and 
in particular sleep-related electrophysiology, as a potent 
therapeutic strategy for AD to improve cognition and 
promote proteostasis.

Probing and treating the sleep‑proteostasis axis
We sought to assess sleep therapies that have reached 
clinical trial stages for AD. A detailed review and meta-
analysis of sleep therapies in dementia has been recently 
conducted [304]; whereas our purpose was to col-
late those therapies that demonstrate the potential for 
repurposing as modifiers of the sleep-proteostasis axis. 
Therapies were found via a search in clinicaltrials.gov 
(February 2023): Condition or Disease: Alzheimer’s dis-
ease; Other terms: sleep; Study Type (interventional) 
and was manually restricted: removed non-interven-
tional studies, removed behavioral studies not directly 
sleep-associated, removed Aβ-targeted trials (i.e., immu-
notherapies, β-secretase inhibitors, anti-aggregants), 
already approved for AD, or were not related to sleep 
modulation. This search yielded 108 intervention trials, 
44 using pharmacological or nutritional/dietary supple-
ments (Table 2) and 64 non-pharmacological treatments 
(Table 3). Their relevance to proteostasis (Tables 2 and 3) 
and mechanisms (Fig. 4) are documented.

Trazodone
Trazodone hydrochloride is a unique therapy on this list 
due to hitting multiple targets on the sleep-proteostasis 
axis. Trazodone is an antidepressant therapy approved 
for use in major depressive disorder, and is commonly 
used for off-label treatment of patients with sleep dis-
orders, and in AD. Multiple neurotransmitter systems 
are affected by trazodone treatment, including selective 
agonism and antagonism of serotonin receptors, sero-
tonin transporter inhibition and reuptake inhibition, 
antagonism of histaminergic and α1 and α2 adrenergic 
receptors, and, to a lesser degree, trazodone exhibits 
anticholinergic activity (reviewed in [346]). In sum, the 
neuromodulatory effects of trazodone can shift neuronal 
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Fig. 4  Neuronal control of the sleep–wake cycle and therapeutic targets for sleep restoration in Alzheimer’s disease. The sleep–wake cycle is 
controlled by neuronal populations vulnerable in Alzheimer’s disease (AD). Circadian rhythmicity is mediated by hypothalamic neuronal activity and 
melatonin release from the pineal gland, normally maintaining a healthy sleep–wake cycle. Sleep is promoted by activity of melanin-concentrating 
hormone (MCH)-neurons in the hypothalamus and broad (including cortical, hippocampal, hypothalamic) GABAergic inhibitory signals. In the 
sleep-state, protein clearance and memory consolidation, mediated by entorhinal-hippocampal circuitry, are enhanced. Conversely, wakefulness 
and arousal are promoted by activity of histaminergic and orexinergic neurons of the hypothalamus, and noradrenergic neurons in the locus 
coeruleus. In the wake-state, cognitive and memory processes (mediated by entorhinal-hippocampal circuitry) occur with higher rates of neuronal 
activity, which potentiates Aβ and tau spread. Therapeutics to enhance sleep in AD present a unique opportunity to simultaneously improve the 
behavioral phenotype and reduce proteinopathy by improved proteostatic clearance. Enhancement of GABA signalling with pharmacological and 
non-pharmacological interventions may broadly improve network dysfunction in AD, for memory and sleep circuits. Notably, gamma entrainment 
is a novel and non-invasive strategy. Sleep promotion and balancing of circadian arrhythmicity can be accomplished via supplementation of 
the biologically active hormone melatonin, or non-pharmacological lifestyle interventions, including behavioral, light, music, and other auditory 
therapies. Pharmacological antihistamines and orexin antagonists decrease wake/arousal-signals and promote sleep. Potential exists for targeting of 
additional neuronal pathways to promote sleep, including noradrenergic signaling which is affected early in AD; the α2 adrenergic receptor agonist 
dexmedetomidine has been tested (see Table 2), but is more suitable as a sedative than therapeutic. Furthermore, the antidepressant trazodone has 
potential for improving sleep in AD acting through neuromodulation of serotonergic, adrenergic, histaminergic, and cholinergic pathways, as well 
as modifying the UPR. Future work is necessary to characterize and discover new sleep- and proteostasis-targeted therapies in AD. See Tables 2 and 
3 for sleep-related AD clinical trials and their relevance to proteostasis. Created with BioRender.com
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control of the sleep–wake balance towards sleep (Figs. 2 
and 4).

In a phase 3 clinical trial, AD patients with sleep dis-
turbances were treated with 50  mg of trazodone once 
per day before bed over a 2-week period. Treatment sig-
nificantly increased sleep time and trended to reduced 
arousals and wake periods throughout the night, with-
out exacerbating daytime napping or EDS. With this 
short-term treatment, cognition was unaffected ([335]; 
Table 2). However, evidence suggests long-term recorded 
trazodone use (median dose: 50 mg/day) in AD patients 
with sleep disturbances slows cognitive decline on mini-
mental state examination, over a 4-year follow-up [347]. 
At a higher dose of 200 mg, trazodone is safe and feasi-
ble in AD patients, and is within the predicted range for 
regulating UPR (reviewed in [276, 348]). Although the 
mechanism of the trazodone-UPR interaction is through 
normalizing protein synthesis rates [276], Aβ and tau 
degradation and clearance may be indirectly improved 
through mitigating neurodegenerative burden, and 
reducing UPR overactivation which will improve cellular 
homeostasis (and proteostasis).

Further work is necessary to identify how trazodone 
can impact AD progression, and at what dose, includ-
ing potential benefits on protein clearance and neuronal 
function. Currently, a phase 2 clinical trial of trazodone 
in MCI is recruiting (as of February 2023) to test the 
effect of a 4-week, 50  mg treatment on SWS quantity 
and quality, sleep onset and fragmentation, cognition, as 
well as hippocampal neuronal activity by functional mag-
netic resonance imaging (ClinicalTrials.gov Identifier: 
NCT05282550; Table 2).

Adrenergic alpha receptor agonism
Agonists of adrenergic α receptors impact the sleep–
wake cycle via a reduction in locus coeruleus noradren-
ergic activity, decreasing arousal and promoting sleep 
[349]. Dexmedetomidine is an α2 adrenergic receptor 
agonist that has demonstrated benefit as a therapeu-
tic in preclinical in  vitro and in  vivo models including 
anti-inflammatory, pro-cognitive and pro-neurotrophic 
effects [350–354], despite association with increased tau 
phosphorylation (i.e., at pS202, pT205, pT231, pS396) in 
cells and rodents lasting up to 6-h post treatment [355, 
356]. Dexmedetomidine is used clinically as an analgesic 
and sedative, due to an induction of NREM stage 2-to-3 
sleep, including increased slow wave delta oscillations 
and spindles in EEG [321–323]. One potential benefit to 
the sleep-proteostasis interaction is that dexmedetomi-
dine acutely enhances glymphatics [323] (see Table  2), 
but its usage as a primary therapeutic for AD remains 
limited and the potential for exacerbating tau pathology 
is of concern.

Orexin antagonism – Suvorexant
Currently, the most promising sleep modulating therapy 
in AD is the orexin antagonist suvorexant, which is used 
in the treatment of insomnia [304] and was approved in 
February 2020 for treatment of sleep disorder symptoms 
in AD patients. Orexin signaling is also reported to regu-
late cognition, and in AD there is orexinergic dysfunction 
that occurs with elevated CSF orexin [184, 187]. Suvo-
rexant competes with orexin for binding to receptors 
OXR1 and OXR2, promoting sleep [304, 357, 358]. In a 
phase 3 trial to treat insomnia with mild-to-moderate 
AD, 4 weeks of daily oral treatment with suvorexant sig-
nificantly improved total sleep time by 73 min more than 
baseline, (45  min in the placebo group); and treatment 
did not worsen cognition and was well-tolerated [308]. 
Recently, Lucey and colleagues demonstrated that acute 
suvorexant treatment in healthy middle-aged adults 
decreased CSF levels of Aβ by 10–20% and p-tau (T181) 
by 10–15%, but not at other p-tau isoforms – S202 or 
T217 [359].

Suvorexant may prove beneficial in combination 
therapies, potentially with the recently approved aduca-
numab or lecanemab, and to probe the sleep-proteosta-
sis axis. Promoting sleep with suvorexant in preclinical 
AD models can be utilized to assess alterations in spe-
cific neuronal vulnerability to tau and Aβ, and potential 
improvements in glymphatic clearance and autophagic 
flux. Modulation of orexinergic function, although lim-
ited to a small cellular population, may exert beneficial 
network effects throughout the brain by promoting sleep, 
helping to balance circadian arrhythmicity, and therefore 
mitigating deleterious changes in proteostasis. Rebalanc-
ing specific neuronal population function (i.e., orexiner-
gic) can potentially correct a network-wide dysfunction 
seen in AD; for example, suvorexant treatment enhances 
hippocampal long term potentiation in AD model mice 
[360].

Characterizing proteostasis improvement from suvo-
rexant treatment in sleep- and AD-associated neurons 
and regions, in hypothalamic orexin neurons, as well 
as EC-hippocampal cognitive circuits (Fig.  4), will help 
define the sleep and proteostasis interaction across dis-
ease progression, and inform efficacy of treatment based 
off disease staging.

Conclusions
As supported by evidence for early disruptions in both 
mechanisms, we postulate that experiments probing the 
sleep-proteostasis axis will be critical in understanding 
AD progression and associations with age. Future work 
will elucidate novel markers of prodromal AD, including 
PET and plasma biomarkers for neuronal vulnerability to 
proteostasis alterations, and EEG disruptions indicative 
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of sleep disruption. Furthermore, single, and combinato-
rial therapies can be tested against sleep and proteostasis, 
including how their efficacy varies across AD progres-
sion. It is important to note that sleep impairments often 
coincide with hypothalamic–pituitary–adrenal axis 
activity and behavioral stress, which also exert effects on 
cellular proteostasis [361, 362]; reducing stress should be 
considered in the design and interpretation of preclinical 
sleep deprivation paradigms [363], to mitigate additional 
stress-related alterations in proteostasis.

There are major challenges facing this research field; 
notably, the technical challenge of collecting and ana-
lyzing molecular-, cellular-, circuit- and behavioral-level 
data, for determining neuronal-, regional- and temporal-
vulnerabilities to sleep and proteostasis deficits. Bioinfor-
matic approaches will be necessary to pinpoint critical 
interactions of these pathologies, and early predictors of 
AD progression and cognitive decline. Once we under-
stand the sleep and proteostasis interaction, the next 
challenge is translatability of novel or repurposed sleep- 
and proteostasis-targeted therapies. However, with the 
recent successes of suvorexant (ClinicalTrials.gov Identi-
fier: NCT02750306; [308]), aducanumab (ClinicalTrials.
gov Identifier: NCT02477800 and NCT02484547) and 
lecanemab (ClinicalTrials.gov Identifier: NCT01767311 
and NCT03887455), there is high potential for successful 
targeted and personalized therapies promoting sleep and 
protein clearance in AD.

Future experiments will facilitate creation of a frame-
work for disease-modifying treatments in AD to slow or 
halt this proteinopathy and reverse behavioral deficits, 
including understanding potential therapeutic efficacy at 
different stages of disease progression. Probing neuronal 
electrophysiology and sleep patterns will allow identi-
fication and repurposing of therapies targeting these 
mechanisms and their interaction with proteostasis, and 
thereby facilitate novel drug discovery. Sleep impair-
ments, proteinopathy and proteostasis failure are com-
mon occurrences with aging and in NDD, and therefore 
the conclusions raised herein pertain to a broad array of 
brain disorders, including cases of mixed pathologies.
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