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Background
Transactivation response element DNA-binding protein 
43 (TARDBP, TDP-43) is an RNA-binding protein impli-
cated in a variety of age-related disorders such as amyo-
trophic lateral sclerosis and frontotemporal dementia 
(ALS-FTD) [1–3], Alzheimer’s disease (AD) [4], limbic-
predominant age-related TDP-43 encephalopathy [5], 
Paget’s Disease of Bone [6], and inclusion body myosi-
tis [7]. TDP-43 proteinopathy is characterized by large 
cytoplasmic inclusions and loss of nuclear TDP-43 stain-
ing [8], suggesting that both gain- and loss-of-function 
effects could contribute to disease pathogenesis.

Genetic deletion models have demonstrated that TDP-
43 is an essential gene [9–14]. Loss of TDP-43 function 
has been linked to neurodegeneration via disruptions in 
the splicing repression of nonconserved cryptic exons [7, 
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Abstract
Background  Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several 
neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-
function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems.

Methods  We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species 
specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore 
we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon 
repression and disease.

Results  Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that 
is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not 
correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43.

Conclusions  Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the 
importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.
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15–29]. Indeed, compelling evidence from recent studies 
suggests that cryptic exons found in the genes STMN2 
[17–19] and UNC13A [22, 23] may contribute signifi-
cantly to disease pathogenesis. Repression of cryptic 
exons in these and other genes represents a promising 
therapeutic strategy for ALS-FTD and other neurode-
generative disorders [29].

By contrast, transgenic models of TDP-43 overexpres-
sion also exhibit toxicity, but do not reproduce the cyto-
plasmic aggregates observed in human disease [30–42]. 
Despite the absence of cytoplasmic aggregation [43], 
these TDP-43 transgenic models exhibit a dose-depen-
dent degeneration of cortical and spinal motor neurons 
[32, 44, 45] that may be linked to excessive levels of 
nuclear TDP-43. Indeed, TDP-43 autoregulates the sta-
bility of its own mRNA by binding to an ultraconserved 
element in its 3’ untranslated region [46–48]. Only a 
single genomic copy of Tardbp is required for survival, as 
Tardbp heterozygotes exhibit the same levels of TDP-43 
protein as wildtypes [11]. Collectively, these data indicate 
that elevated levels of TDP-43 protein are harmful, even 
in non-disease contexts.

Alternative strategies to model TDP-43 proteinopa-
thy have been developed, involving the use of adeno-
associated virus (AAV)-mediated delivery of TDP-43 
[49] and the generation of transgenic TDP-43 mod-
els that feature mutated nuclear localization signals 
(NLS), such as rNLS8 [50–53]. The use of AAV delivery 
bypasses development-specific effects and enables deliv-
ery to specific cell types in adult mice, while the animal 
models that express NLS-deficient TDP-43 enable the 
modelling of cytoplasmic toxicity [54] that are not reca-
pitulated by wildtype overexpression [37]. These studies 
indicate a potential unified mechanism of neurodegen-
eration in which microglia exert a neuroprotective role 
by phagocytically clearing pathological TDP-43 [49–51], 
whereas impaired microglial function could worsen neu-
ronal damage and motor impairments. However, it is not 
known whether the molecular mechanisms that produce 
the pathological changes in these overexpression models 
are equivalent to those that occur in human disease. Fully 
characterizing these mechanisms will be crucial to accu-
rately interpret TDP-43 overexpression models and their 
relevance to human disease.

Prior work in transgenic mouse models has demon-
strated that increased expression of wild-type or mutant 
TDP-43 in mice caused widespread splicing changes, 
with differing effects depending on specific exons and 
TDP-43 variants [55]. While elevated wild-type TDP-43 
increased exon skipping for many exons, mutant TDP-43 
showed both loss-of-function (reduced exon skipping) 
and gain-of-function (skipping of new exons) effects in 
an exon-dependent manner that also depended on lev-
els of transgene expression. Further studies used mouse 

mutants carrying point mutations in endogenous Tar-
dbp to identify a novel class of exons, termed “skiptic 
exons”, that are skipped due to gain-of-function effects 
from these Tardbp point mutations [56]. These skiptic 
exons show high conservation across species and 2 out 
of 7 skiptic events were validated in fibroblasts from 
ALS patients with disease-causing TARDBP mutations. 
Although TDP-43 RNA binding was proposed as the 
likely mediator of splicing gain-of-function, the authors 
also identified that various point mutations are able to 
disrupt autoregulation and lead to increased mRNA lev-
els of Tardbp, as was reported in a parallel study [57]. 
These findings highlight the nuanced impact of TDP-43 
mutations and expression levels on alternative splicing 
regulation.

In this work, we demonstrate that excessive levels of 
nuclear TDP-43 protein, mutant or wildtype, leads to the 
repression of constitutive exons that are normally incor-
porated into mRNAs. Sufficiently high levels of TDP-43 
overexpression can overwhelm autoregulation, even 
when nuclear localization-deficient isoforms of TDP-43 
[50, 52, 58] are introduced. TDP-43 preferentially binds 
to long repetitive UG repeats [16, 59], but with higher 
concentrations in the nucleus, we theorize that TDP-43 
can bind to shorter, less optimal UG-containing motifs 
present at these constitutive exons.

Interestingly, the constitutive exons repressed by exces-
sive TDP-43 are mostly divergent between mouse and 
human neurons. We also find that, while aberrant con-
stitutive exon skipping can be detected in some human 
brain samples, constitutive exon skipping does not corre-
late with disease. By contrast, TDP-43 dependent cryptic 
exons are found only in human disease tissues or bioflu-
ids. Our findings imply that constitutive exon skipping 
is associated with TDP-43 overexpression, but its direct 
link to neurodegeneration requires further investiga-
tion in vivo. The consequences of skiptic splicing should 
be considered when developing models of TDP-43 pro-
teinopathy to ensure that these models accurately reflect 
disease mechanisms.

Results
Transgenic models of TDP-43 overexpression exhibit 
a dose-dependent toxicity [31, 60–62], but do not reca-
pitulate the nuclear clearance and cytoplasmic aggrega-
tion that are hallmarks of TDP-43 proteinopathy. TDP-43 
overexpression models also do not exhibit any disrup-
tions in cryptic exon repression, as found in models of 
TDP-43 loss-of-function [15]. These findings suggest that 
increasing TDP-43 protein to a degree that significantly 
exceeds physiological levels introduces gain-of-function 
toxicity that may not be applicable to the pathogenesis of 
human disease. Therefore, to determine whether slight 
elevations in TDP-43 levels could produce better models 
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of disease, we generated transgenic mice that express 
wildtype human TDP-43 (TDP-43WT) or human TDP-43 
carrying the G298S mutation (TDP-43G298S) that is asso-
ciated with familial ALS [63], under the control of the 
Thy1.2 promoter (Fig. 1A). Immunoblotting analysis indi-
cates that total TDP-43 protein levels in these transgenic 

models was approximately 50% higher than in non-
transgenic controls (Fig. 1B). Indeed, transgenic animals 
developed a progressive motor deficit that began with 
hind-limb clench and hemiparesis, eventually leading to 
end-stage paralysis. Behavioral testing showed marked 
reduction on hanging time in transgenic lines compared 

Fig. 1  TDP-43 overexpression in mice leads to skipping of constitutive exons. (A) Human TDP-43 (TDP-43WT) and TDP-43 carrying a G298S mutation (TDP-
43G298S) were expressed under the weak Thy1.2 promoter in mice. (B) TDP-43 levels in the spinal cord and cortex of transgenic mice were compared to 
control mice using immunoblotting. In both transgenic lines, TDP-43 protein levels were elevated at approximately 1.5x and 1.3x higher in the spinal cord 
and cortex, respectively (* p < 0,05, ***p < 0.001). (C) We measured the hanging time of transgenic mice compared to their littermate controls and found a 
reduction associated with age, indicative of a motor neuron deficit. (D) Both transgenic lines had shorter survival times compared to non-transgenic (NT) 
controls (NT vs. WT: p = 0.0005, NT vs. G298S: p = 0.0035), but no differences were found between the two transgenic lines (WT vs. G298S: p = 0.1260). (E-G) 
RNA-Seq analysis on isolated mouse spinal cords revealed several examples of exon skipping (arrows) in both transgenic lines. (H) We further validated 
these findings by transfecting mouse N2a cells with human TDP-43 and performing RT-PCR to test whether TDP-43 expression alone was sufficient to 
induce exon skipping
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Fig. 2 (See legend on next page.)
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with littermate controls (Fig. 1C) and animal weights for 
both transgenic mouse lines markedly decreased over 
time (Supplementary Fig. 1). The Kaplan-Meier survival 
curve indicated that lifespans of individuals from both 
transgenic lines were significantly shorter than their lit-
termate controls (Fig.  1D). Pathological examination 
showed that TDP-43 overexpression was confined to 
the nucleus of neurons from the cortex and spinal cord, 
without any cytoplasmic inclusions in either transgenic 
line. Furthermore, histological analysis revealed reduc-
tion in axonal diameter, neuromuscular denervation and 
muscle degeneration in both transgenic lines, reflecting 
the severity of their condition (Supplementary Fig. 1). In 
summary, both TDP-43WT and TDP-43G298S mouse lines 
exhibited similar phenotypes of mild motor deficits that 
appeared to be mutation-independent.

We next hypothesized that the observed pheno-
types could be explained by changes in gene expression 
or alternative splicing due to the relatively low levels 
of TDP-43 overexpression. To profile these transcrip-
tomic changes, we surgically isolated the ventral horn 
of the spinal cord and conducted bulk RNA sequencing 
(RNA-Seq) on the TDP-43WT and TDP-43G298S lines, as 
well as non-transgenic controls. TDP-43 has been well-
described as a splicing repressor and loss of TDP-43 
function leads to the inclusion of nonconserved cryp-
tic exons. Interestingly, analysis of transgenic RNA-Seq 
data revealed that overexpression of both TDP-43WT and 
TDP-43G298S leads to the skipping of constitutive con-
served exons (Fig.  1E-G). To verify that these splicing 
events were indeed due to TDP-43 overexpression and 
not due to the secondary effects of neuronal degenera-
tion, we overexpressed TDP-43 in mouse N2a cells and 
performed a RT-PCR to detect the same targets identified 
from TDP-43WT and TDP-43G298S transgenic RNA-Seq 
data. As predicted, we observed prominent constitutive 
exon skipping only following TDP-43 overexpression 
(Fig.  1H). Together, these data indicate that even mild 
overexpression of TDP-43 (50% increase over controls) is 
sufficient to induce aberrant exon skipping and that exon 
skipping could be mediating the dose-dependent toxicity 
of TDP-43 overexpression.

Given the evolutionary conservation of the coding 
exons skipped by TDP-43 overexpression in mice, we 
hypothesized that syntenic exons in the human genome 
might also be skipped by TDP-43 overexpression in 

human cells. To profile exon skipping, we transduced 
human i3Neurons [64] with lentivirus expressing TDP-
43 and examined the splicing patterns of the equivalent 
exons observed to be skipped in mice (Fig.  2A). Unex-
pectedly, a large majority of skipped exons in mice were 
not skipped in human cells following TDP-43 over-
expression, despite a ∼ 1.6x fold increase in TDP-43 
protein (Supplementary Fig.  2). To understand these 
differences, we expanded our RNA-Seq analysis on 
transduced i3Neurons to include all splicing events and 
found that exon skipping still occurred across multiple 
genes (78 skipped exons, Supplementary Fig.  3) but at 
sites entirely different from those found in mice (Sup-
plementary Table 1). We only found two exceptions in 
DDI2 and SLC6A6 where skipping occurred for equiva-
lent mouse and human exons (Supplementary Fig.  3). 
Importantly, SLC6A6 has already been validated as a 
skiptic event in the TDP-43M323K mouse line and human 
fibroblasts derived from ALS patients carrying TARDBP 
pathogenic mutations [56]. The genes affected by exon 
skipping regulate a variety of cellular pathways includ-
ing those associated with intellectual disability, synaptic 
activity, and mitochondrial proteins (Fig. 2B-C). Three of 
the clearest splicing repression events (∼ 90% reduction) 
include exons in HYOU1, NUP93, and XPNPEP1, where 
the corresponding exon in mice remains constitutively 
spliced (Fig.  2D-F). We confirmed that these human 
skipped exons we evolutionarily conserved (Supplemen-
tary Fig. 4) and further validated the RNA-Seq results by 
RT-PCR analysis (Fig.  2G-H). UG repeats serve as the 
consensus binding site for TDP-43. An analysis of exons 
repressed by TDP-43 overexpression reveals the presence 
of short UG motifs that may be responsible for species-
specific exon skipping, but these UG motifs are not as 
long as UG repeats associated with cryptic exons (Fig. 2I, 
Supplementary Fig. 5) [15, 16, 59, 65]. This suggests that 
smaller UG repeats may be available for TDP-43 to bind 
when protein concentrations of nuclear TDP-43 exceed 
a certain threshold, as indicated by a limited number of 
eCLIP motifs adjacent to skipped exons (Supplemen-
tary Fig. 6). Overall, our data indicate that while TDP-43 
overexpression leads to aberrant exon skipping across the 
transcriptome, the exons that are skipped appear to be 
species-specific and generally exhibit shorter UG repeats 
than cryptic exons (Fig. 3A).

(See figure on previous page.)
Fig. 2  TDP-43 overexpression induces exon repression in humans. (A) Human i3Neurons were transduced with lentivirus expressing human TDP-43 and 
sequenced to compare exon skipping between mouse and human. (B) RNA-Seq analysis revealed numerous genes with skipped exons that are involved 
in a variety of molecular pathways related to intellectual disability, synaptic activity, and mitochondrial proteins (C). We identified exons with particularly 
high levels of exon skipping in the genes HYOU1, NUP93, and XPNPEP1 (arrows). (D-F) When cross-referenced with datasets from transgenic mice, we 
found that exons repressed in humans were not repressed in mice. Using RT-PCR, we validated skipping events in i3Neurons with primers located in 
exons adjacent to the repressed exon (G) or primers that spanned a skipped junction (H). (I) Analysis of UG repeats in human skiptic exons revealed that 
TDP-43’s consensus motifs are found in both the repressed exon itself and adjacent intronic sequences. UG motifs appear slightly more frequently around 
the downstream 5’ splice site, but with far shorter UG repeat lengths than those found adjacent to cryptic exons [73]
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Fig. 3 (See legend on next page.)
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Next, we wanted to explore whether TDP-43-mediated 
exon skipping represents a potential mechanism underly-
ing the pathogenesis of ALS and TDP-43-related demen-
tias. To study this, we designed single-band RT-PCR 
primers that could selectively amplify the unique junc-
tion produced by constitutive exon skipping. We pro-
filed brain samples from FTD with TDP-43 inclusions, 
AD with or without TDP-43 inclusions, TDP-43 negative 
human brain controls, and i3Neurons. Previous studies 
have demonstrated that a cryptic exon found in the gene 
STMN2 is a robust biomarker for ALS-FTD [17–19, 66]. 
As expected, the STMN2 cryptic exon was detected in 
all four FTD samples and in 3 out of 4 AD TDP-43 posi-
tive samples and 2 out of 4 AD TDP-43 negative samples 
(Fig. 3B). AD cases without TDP-43 inclusions may still 
exhibit cryptic exons (STMN2) due to the observation of 
TDP-43 nuclear clearance without cytoplasmic aggre-
gation [24, 67, 68]. However, skipping events in at least 
three genes (HYOU1, NUP93, and XPNPEP1) could be 
detected in both disease cases and controls.

Since exon skipping was detected in some control 
cases, we explored whether aberrant exon skipping could 
be correlated with aging. To study this, we explored pub-
licly available RNA-Seq archives using Snaptron and 
Recount3 [69–72], queried each skipped exon across 
thousands of brain samples available through the GTEx 
repository [73], and generally observed low levels of exon 
skipping, with slightly higher skipping frequencies in cer-
ebellum tissue (Fig. 3C, Supplementary Fig. 7). Our data 
suggest that aberrant exon skipping, induced by excessive 
levels of nuclear TDP-43, is unlikely to play a significant 
role in disease pathogenesis.

Since aberrant exon skipping can occur independent 
from disease status, it will be important to avoid exon 
skipping when modeling TDP-43 proteinopathy. Overex-
pression of TDP-43 can be a valuable tool for investigat-
ing cytoplasmic toxicity, gain-of-function mechanisms, 
and post-translational modifications that may impact 
TDP-43 binding and other pathological interactions [74–
77]. Indeed, certain methods that induce cytoplasmic 
aggregation of TDP-43 can mimic loss-of-function [78, 
79]. However, dose-dependent toxicity resulting from 
exon skipping may confound results when analyzing 

phenotypes from overexpression model systems, par-
ticularly since TDP-43 induced exon skipping appears 
to be highly species specific. Approximately 43% (30/69, 
Supplementary Table 1) of skipped exons are predicted 
to induce NMD, although skipped exons that retain read-
ing frame are still predicted to impact protein structure 
(Fig.  3, Supplementary Fig.  8). Using the AlphaFold 2 
protein prediction artificial intelligence system [80], we 
investigated the consequences on protein structure due 
to exon skipping and found significant impacts on pro-
tein structure and folding. For example, the XPNPEP1 
isoform that results from exon skipping leads to complete 
disruption of the second domain of the protein (Fig. 3D, 
H). For HYOU1, we observe a loss of alpha helical 
domains in the C-terminal region of the protein (Fig. 3G, 
K). In NUP93, we predict that exon skipping would lead 
to dramatic changes in the C-terminal region that is cru-
cial for nuclear pore complex assembly (Fig. 3E, I). These 
results suggest that inframe exon skipping can still dra-
matically affect protein structure and function, thereby 
leading to cellular toxicity.

A promising alternative to overexpression of wildtype 
TDP-43 (TDP-43WT) that could avoid exon skipping is 
the overexpression of TDP-43NLSm, where the nuclear 
localization signal is mutated [50, 52, 58]. Transgenic 
mice (rNLS8) have been generated where expression of 
TDP-43NLSm can be induced by doxycycline (Dox) under 
the control of a neuron-specific driver line, the human 
NEFH-tTA promoter [53]. However, since TDP-43NLSm 
can enter the nucleus passively [54, 81], we wanted to 
determine the maximum level of TDP-43NLSm expres-
sion at which exon skipping can be detected. For this we 
used previously established doxycycline (Dox) inducible 
HEK-293 stable cell lines [58] to conditionally express 
TDP-43WT (iGFP-WT) or TDP-43NLSm (iGFP-NLSm) 
(Fig.  4A). Using RT-PCR, we found that exon skipping 
was present following doxycycline-dependent induction 
of either TDP43WT or TDP43NLSm Dox induction. How-
ever, the percentage of exon skipping for iGFP-NLSm 
induction reached only approximately 9% while iGFP-
WT induction led to exon skipping of ∼ 90% (Fig.  4B). 
As previously described, induction of either iGFP-WT 
or iGFP-NLSm causes autoregulation of endogenous 

(See figure on previous page.)
Fig. 3  TDP-43 exon skipping events are found in aging human brains but do not correlate with disease. (A) Alignment of syntenic mouse (mm10) and 
human (hg38) genomic sequences surrounding exons repressed by TDP-43 overexpression in human cells. Constitutively spliced exons in the genes 
XPNPEP1, NUP93, MYBBP1A, and HYOU1 are skipped in human cells but not mouse cells when TDP-43 is overexpressed. By contrast, the exon in DDI2 is 
repressed in both mouse and human cells. UG motifs (yellow highlights) are slightly enriched around the 3’ and 5’ splice sites (Supplementary Fig. 5). (B) 
We performed RT-PCR to amplify cryptic junctions or exon-repressed junctions in human brain samples from patients with AD pathology with or without 
TDP-43 inclusions, frontotemporal dementia with inclusions, and control patients who did not have TDP-43 inclusions and profiled the STMN2 cryptic 
exon [16, 17]. RT-PCR analysis showed that exon skipping occurred in both control and disease samples. (C) Exploration of skipping events through nor-
mal human aging was performed by analyzing RNA-Seq datasets from the Genotype-Tissue Expression (GTEx) project. PSI values of skiptic exons across 
human brain regions are shown for the age range of 60 to 69 years old (all age ranges are available in Supplementary Fig. 7). Exon skipping is found at low 
levels in most of the different brain areas analyzed, with slightly higher levels in the cerebellum. (D-K) AlphaFold2 was used to model protein structures 
with (D-G) and without (H-K) skipped exons. Purple highlights indicate repressed exons while green highlights indicate flanking amino acid sequences
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Fig. 4  Overexpression of the ΔNLS mutant TDP-43 (TDP-43NLSm) induces exon repression when expressed at higher levels than wildtype TDP-43. QBI-
293 cells with a dox-inducible cassette expressing TDP-43-GFP (iGFP-WT) or TDP-43 with a mutated NLS (iGFP-NLSm) were exposed to Dox for 0, 24, 48, 
72 h in triplicate. (A) Immunoblot of TDP-43 levels after Dox induction (left) and RT-PCR for NUP93, XPNPEP1 and MYBBP1A. (B) RT-PCR quantification of 
iGFP-NLSm, exon repression reached ∼ 9% compared to ∼ 95% in iGFP-WT induction. (C) Total TDP-43 protein levels for WT and NLSm reached ∼ 2 times 
normal. (D, E) Estimated nuclear TDP-43 levels based on TDP-43NLSm passive diffusion. (F, G) HEK-293 cells transfected with TDP-43WT-P2A-GFP or TDP-
43NLSm-P2A-GFP were FACS sorted into seven fractions by GFP intensity. Immunoblotting of isolated nuclei showed increasing TDP-43NLSm/TDP-43WT 
ratio with higher expression. (H) RT-PCR showed progressive exon skipping with TDP-43WT or TDP-43NLSm overexpression, performed in duplicate. (I) With 
strong expression, TDP-43WT can repress exons by ∼ 95% but TDP-43NLSm only by ∼ 40%. Using these data, we estimate the proportion of TDP-43NLSm in 
the Dox-inducible system, dotted line (D). Levels of total TDP-43WT and total predicted TDP-43NLSm in the nucleus are plotted together with their respec-
tive exon expression levels (E)
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TDP-43, but also increases the total amount of TDP-43 
protein (Fig. 4C-D). We estimate that a 50% increase in 
total TDP-43 compared to its endogenous level is enough 
to induce at least 40% of exon skipping. By comparison, 
a 100% increase in total TDP-43, due to iGFP-NLSm 
induction, leads to only 9% exon skipping (Fig. 4E). If we 
assume that 45% of iGFP-NLSm can passively diffuse into 
the nucleus (Table 1), we can estimate the total TDP-43 
with the following calculation for Fig.  4D and E: [Total 
TDP-43] = [endogenous TDP-43] + 0.45 * [iGFP-NLSm].

In animal models, first month of doxycycline induc-
tion results in overexpression of about 8 to 10-fold total 
TDP-43 (TDP-43NLSm + endogenous TDP-43), suggesting 
that excessive levels of TDP-43NLSm may induce higher 
levels of exon skipping [58]. To test whether higher levels 
of TDP-43NLSm overexpression promotes higher passive 
diffusion into the nucleus, we transfected HEK-293 cells 
with TDP-43WT-P2A-GFP or TDP-43NLSm-P2A-GFP and 
used FACS to obtain seven population fractions based on 
GFP intensity (Fig. 4F). We performed nuclei isolation on 
each fraction and quantified TDP-43 levels by immunob-
lotting and found that endogenous TDP-43 (TDP-43end) 
was eliminated by autoregulation from TDP-43WT trans-
fection in FACS populations with higher GFP intensity. 
This autoregulation was less evident in TDP-43NLSm, as 
nuclear TDP-43NLSm did not reach levels that were suf-
ficient to completely repress TDP-43end even in the high-
est GFP intensity population. By comparing the ratio of 
TDP-43WT/TDP-43NLSm at equivalent FACS populations, 
we estimated that 10–45% of TDP-43NLSm can enter the 
nucleus. The wide range in diffusion percentages reflects 
the non-linear increase in TDP-43WT transfection, as 
total TDP-43 levels begin to saturate and plateau despite 
an increase in GFP fluorescence (Fig.  4G). To estimate 
the minimal level of TDP-43 required to induce exon 

skipping, we also isolated RNA from each of the seven 
FACS populations isolated by GFP intensity and evalu-
ated exon skipping using 2-band RT-PCR (Fig. 4H). We 
found that TDP-43WT overexpression induced 90% exon 
skipping while TDP-43NLSm saturated at 40% exon skip-
ping (Fig. 4H). Since TDP-43NLSm induces exon skipping 
in FACS fraction six at equivalent levels as the iGFP-
NLSm Dox inducible system, i.e. both induce 9% exon 
skipping, we can use immunoblot analysis of isolated 
nuclei to estimate that nuclear TDP-43NLSm is approxi-
mately 40% of nuclear TDP-43WT (Fig.  4G). With these 
estimates, we extrapolated that total TDP-43 levels 1.1 to 
1.5-fold above normal can begin to induce exon skipping. 
Together this suggests that cell line and animal models 
using TDP-43NLSm could cause exon skipping toxicity if 
expression reaches sufficiently high levels. Estimations 
on the levels of TDP-43 required to induce exon skip-
ping and the diffusion of TDP-43NLSm are summarized in 
Table 1.

Discussion
In this study, we explore the molecular mechanisms 
by which excessive levels of TDP-43 in the nucleus can 
induce cellular toxicity. Our findings reveal that TDP-43 
overexpression leads to skipping of constitutive exons 
that are normally incorporated into mRNAs under steady 
state conditions. This aberrant exon skipping appears 
to be driven by high concentrations of nuclear TDP-43 
binding to suboptimal UG motifs located near these con-
stitutive exons, although further studies are necessary to 
understand the exact mechanism of splicing repression.

Indeed, we observe that nearly all exons skipped due to 
TDP-43 overexpression are species-specific, at least when 
comparing between TDP-43 overexpression in mouse 
and human neurons. It is important to note that there is 

Table 1  Estimates for the amount of excess nuclear TDP-43 that is required to induce exon skipping across different experimental conditions. Our results 
suggest that an increase in TDP-43 that is greater than 1.1 to 1.5 fold over normal protein levels may lead to exon skipping toxicity. Models for TDP-43 
overexpression should avoid increasing nuclear TDP-43 and aim to strictly limit excess TDP-43 to only the cytoplasm
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no clear consensus on the precise definitions and crite-
ria used to classify constitutive, cryptic, and skiptic exons 
within the TDP-43 field. In this study, we consider exons 
with high percent spliced-in (PSI) values (> 90%) under 
steady-state conditions as constitutive, acknowledging 
that this threshold may differ from prior studies, and 
define skiptic exons as exons with high PSI values that are 
aberrantly skipped due to TDP-43 gain-of-function. We 
recognize that some identified skiptic events may repre-
sent increased alternative splicing rather than skipping of 
strictly constitutive exons, but further community effort 
is needed to precisely define these categories. Previous 
work has identified constitutive exon skipping (skiptic 
exons) in a knock-in mouse model that carries a TDP-
43 mutation in its low complexity domain (TardbpQ331K) 
and suggested that skiptic splicing is a gain-of-function 
directly associated with disease-associated mutations 
[56]. Our data suggests that the observed increase in total 
TDP-43 in heterozygous and homozygous TardbpQ331K 
mice likely mediates skiptic splicing. By contrast, some 
disease-associated TDP-43 mutations appear to cause 

loss-of-function that can result in the incorporation of 
cryptic exons [82–84]. It remains to be seen whether 
other mutations in TDP-43’s C-terminal domain can also 
increase total TDP-43 levels and lead to constitutive exon 
skipping. In a limited comparison of PSI values between 
the TDP-43WT and TDP-43G298S transgenic models of 
this study, we do not detect skiptic events that are unique 
to TDP-43G298S (Supplementary Fig. 9), but this does not 
rule out the possibility that other variants having muta-
tion-specific effects on splicing [17, 55] (Supplementary 
Data Files 3–5). Knock-in models of TDP-43 mutations 
may recapitulate potential shared mechanisms of dis-
ease between mouse and human, but our study suggests 
that skiptic exons and affected cellular pathways will be 
largely species specific.

Furthermore, while skiptic splicing could be detected 
in some human brain samples, these aberrant splicing 
events could also be detected in non-disease controls. 
By contrast, cryptic exons were exclusively detected in 
human disease samples, indicating their potential sig-
nificance in disease pathogenesis. These findings have 

Fig. 5  Summary Diagram. TDP-43 is a highly autoregulated protein due to different forms of cellular toxicity when TDP-43 protein levels are either too 
low (cryptic exon incorporation) or too high (constitutive exon skipping, i.e. skiptic exons). Our study has demonstrated that these splicing deficits are 
linked specifically to nuclear TDP-43, whereas toxicity due to cytoplasmic TDP-43 remains to be fully elucidated. Future studies that avoid constitutive 
exon skipping (skiptic exons) may identify biomarkers for cytoplasmic-specific TDP-43 toxicity
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important implications for the interpretation and use 
of TDP-43 overexpression models in neurodegenerative 
disease research.

Our study underscores the need for caution when 
interpreting data obtained from TDP-43 overexpression 
models. We believe that TDP-43 induced exon skipping 
can be avoided when generating such models by ensuring 
that overexpressed TDP-43 is restricted to the cytoplasm 
and limiting nuclear TDP-43 protein levels to 130–150% 
above steady state. Cytoplasmic gain of function and 
nuclear loss of function of TDP-43 may both contrib-
ute to the pathogenesis of neurodegenerative diseases, 
but skiptic splicing may confound the interpretation of 
some model systems. For example, we observe minimal 
exon skipping in cell lines that stably express ΔNLS-
TDP-43, but rNLS8 mice exhibit levels of nuclear TDP-
43 that may be sufficient for skiptic splicing. Likewise, it 
remains to be determined whether AAV-mediated deliv-
ery of TDP-43 can also induce exon skipping, or whether 
TDP-43 autoregulation can minimize excessive nuclear 
TDP-43.

A notable limitation of our study is the lack of direct 
evidence connecting exon skipping with cell survival 
and disease pathology in vivo. We describe a potential 
pathogenic mechanism by which overexpression of vari-
ous forms of TDP-43 (wildtype, mutant, or ΔNLS) induce 
aberrant exon skipping, but the context in which these 
exon skipping events occurs has not been fully addressed. 
TDP-43 overexpression may have other unexplored off-
target effects, with exon skipping perhaps representing 
only one part of a broader impact. Further research is 
needed to assess the consequences of exon skipping on 
cell viability and disease progression, and to explore the 
full range of TDP-43’s effect in the cytoplasm. For exam-
ple, TDP-43 overexpression has recently been linked to 
the misregulation and accumulation of NPTX2 [85]. 
Although significant reductions in skiptic exons were 
not observed, exon skipping was nevertheless detected in 
bulk sequencing data at a range of _% to _% upon induc-
tion with TDP-43 (Supplementary Fig.  10), suggesting 
the possibility that a subset of cells may exhibit higher 
levels of exon skipping.

In conclusion, our study provides new insights into 
the complex molecular mechanisms underlying TDP-43 
gain- and loss-of-function models. Our findings suggest 
that TDP-43 autoregulation is a highly conserved mecha-
nism because both reduction and increases in TDP-43 
protein levels lead to toxicity; depletion of nuclear TDP-
43 leads to cryptic exon incorporation, while excess 
nuclear TDP-43 leads to constitutive exon skipping 
(Fig. 5). Future models of TDP-43 pathology should con-
sider both cryptic exon inclusion and constitutive exon 
skipping to capture the complex role of TDP-43 in neuro-
degenerative diseases.

Methods
Ethics declarations
The authors declare no competing interests.

Antibodies

Transgenic mouse generation
A Thy1.2 expression cassette on a pUC18 backbone was 
used to generate transgenic mice. Plasmids pTSC-TDP-
WT and pTSC-TDP-G298S were constructed and sub-
mitted to the Transgenic Core Laboratory at the Johns 
Hopkins University School of Medicine for pronuclear 
injection using the hybrid mouse strain C57B6;SJL. 
Potential founders were screened by tail cutting, genomic 
DNA extraction, and PCR. The WT and G298S lines 
were maintained in the hybrid background and pheno-
typic characterization was started at the F3 generation. 
All mouse experiments were approved by the Johns Hop-
kins University Animal Care and Use Committee.

Hanging wire tests
F3 generation was followed to the end-stage (death or 
inability to right from a lateral decubitus position), and 
survival data was recorded. A subset of this population 
was selected for monthly hanging wire tests. Briefly, a 
mouse was placed on a wire grid, and the grid was shaken 
to encourage the mouse to grip the wires. The grid was 
then turned upside down and held level while the time 
for the mouse to fall was recorded, the endpoint was 60 s. 
Each mouse was tested 3 times, with the maximum hang 
time recorded as the result.
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Tissue preparation for sectioning
Mice were anesthetized with an intraperitoneal injection 
of 15% chloral hydrate and anesthesia was monitored 
with limb and corneal reflex checks. Portions of quadri-
ceps muscles were snap-frozen for sectioning. Mice were 
transcardially perfused with 50–100 mL of cold PBS, 
and then fixed on 4% PFA. The L3 and L4 dorsal root 
ganglia and attached dorsal and ventral roots were iden-
tified, removed, placed in a fixation buffer with 2% glu-
taraldehyde overnight, washed in PBS and embedded in 
Epon for EM. The brain and spinal cord were dissected 
and separated into right/left halves. One half of each was 
placed in a fixation buffer overnight at 4  °C with gentle 
agitation, and then held in PBS prior to embedding in 
paraffin and sectioning. The other half brain was half spi-
nal cord was placed in a fixation buffer for 2 h, and then 
switched to sterile PBS with 30% sucrose overnight at 
4 °C to be embedded in O.C.T and frozen in isopentane 
for cryostat sectioning.

Immunofluorescence and immunohistochemistry
Paraffin-embedded brain samples were sectioned in 
the sagittal axis and spinal cord samples were sectioned 
in the cross-sectional axis onto slides. Slides used for 
immunohistochemistry were incubated at 60  °C for 
30 min, then deparaffinized in xylene and ethanol. Anti-
gen retrieval was accomplished by incubating slides for 
5  min in boiling 10mM sodium citrate buffer (pH 6.0). 
Slides were washed with PBS and blocked and stained 
using appropriate primary antibodies and reagents from 
the Vectastain Elite ABC kit (Vector Labs). Diaminoben-
zidine exposure was titrated to optimal contrast, sec-
tions were counterstained with Mayer’s hemalaun, and 
then slides were dehydrated using ethanol and xylene and 
mounted.

Frozen gastrocnemius muscle was cut into 40 μm lon-
gitudinal sections using a freezing sliding microtome 
(Leica). Sections were separated into wells on a 12-well 
plate and blocked in IF blocking buffer: PBS with 5% nor-
mal goat serum and 0.5% Triton-X, slides were incubated 
overnight at 4  °C on primary antibody (rabbit anti-Syn-
aptophysin and mouse anti-SMI-312), diluted in blocking 
solution. Sections were then washed with PBS with 0.5% 
Triton-X, incubated with α-bungarotoxin and goat anti-
rabbit and anti-mouse secondary antibodies conjugated 
to Alexa Fluor-488 (Invitrogen), and washed again. Sec-
tions were spread on slides and coverslips were attached 
using Prolong Gold Antifade Reagent (Life Technolo-
gies). Slides were examined using a Zeiss LSM 510 Meta 
confocal microscope.

Muscle histology
Frozen quadriceps muscle embedded in O.C.T. were cut 
into 10  μm cross-sections onto slides using a cryostat 

(Leica). For H&E staining of muscle, sections were cov-
ered for 20 min with a fixation buffer (4% PFA in PBS). 
Sections were rinsed with distilled water, stained with 
Mayer’s Hemalaun, rinsed, and stained with Eosin. 
After a final rinse, samples were dehydrated in etha-
nol and xylene, and coverslips were applied. For ester-
ase staining, 25% α-naphthyl acetate, 5% acetone, 0.1% 
Pararosaniline HCL, and 0.1% Sodium Nitrate in 0.2  M 
Sodium Phosphate solution was used. The solution was 
applied to quadriceps sections for 5 min, rinsed in run-
ning tap water for several minutes and slides were then 
dehydrated in ethanol and xylene, mounted. Esterase 
and H&E-stained sections were analyzed under light 
microscopy.

I3neurons TDP-43 lentivirus transduction
i3Neurons [86] were transduced with lentivirus contain-
ing N-terminal Flag-tagged wild type TDP-43 at 1MOI, 
2MOI, and 4MOI, respectively, at Brain physiological 
stage day 11. Neurons were harvested on Day 14 and 
dried ice frozen. Total RNA was isolated using Trizol 
extraction and used for downstream RNA sequencing 
analyses.

TDP-43 dox-inducible QBI-293 stable cell lines
iGFP-WT and iGFP-NLSm inducible cell lines were 
kindly provided by Silvia Porta and Virginia Lee [52] 
and cultured on Dulbecco’s Modified Eagle Medium 
supplemented with 10% FBS (Corning, 35-010-CV), 
and 1% Penicillin-Streptomycin (ThermoFisher Scien-
tific, 15,070,063), L-glutamine (20 mM, Corning Cellgro, 
Manassas, VA) with G418 (400 µg ml − 1, Calbiochem, La 
Jolla, CA). Cells were induced with Dox ug/mL and col-
lected after 24 h, 48–72 h of induction.

HEK-293 cell culture, transfection, FACS separation and 
nuclei isolation
HEK-293 cells were cultured in Dulbecco’s Modified 
Eagle Medium supplemented with 10% FBS (Corning, 
35-010-CV), 1x GlutaMAX (ThermoFisher Scientific, 
35,050,061), and 1% Penicillin-Streptomycin (Thermo-
Fisher Scientific, 15,070,063). For overexpression of TDP-
43WT and TDP-43NLS ORF expression cassettes were 
cloned into pAAV-CBh-mKate2-IRES-MCS (a gift 
from Marcella Patrick, Addgene plasmid # 105,921) and 
transfected on HEK-293 cells with Lipofectamine 3000 
(Thermo Fisher Scientific, L3000-008) following the 
manufacturer’s protocol. Two days of transfection single 
cell suspensions were obtained using TrypLE (Thermo-
Fisher Scientific, 12,604,013) and sorted by GFP fluores-
cence intensity on a BD FACSCalibur in the JHMI Ross 
Flow Cytometry Core Facility. Nuclei were isolated fol-
lowing the 10x Genomics nuclei isolation protocol from 
cell suspensions.
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Immunoblotting
Tissues and cells were digested in RIPA Buffer with 1%, 
protease inhibitor (Roche Complete ULTRA mini tab-
let + EDTA), and phosphatase inhibitor (Roche PhosS-
top). Samples were centrifuged, and supernatants were 
saved. Protein concentrations in the supernatants were 
determined using a BCA assay (Pierce), and 20 µg of total 
protein was loaded into each well of a 10–20% Tris-Gly-
cine gel or a 4–12% Bis-Tris gel (Invitrogen). Protein was 
transferred to a PVDF membrane (Millipore), blocked 
with 5% BSA in TBS with 0.1% Tween-20. Membranes 
were incubated overnight at 4 °C with primary antibody 
diluted in blocking buffer, then washed three times with 
TBS with 0.1% Tween-20, and incubated for 2  h with 
secondary antibody (Goat anti-mouse IgG-HRP or Goat 
anti-rabbit IgG-HRP, Sigma) diluted in blocking buffer. 
Three more washes with TBS with 0.1% Tween-20 fol-
lowed, and then membranes were soaked in ECL solution 
(EMD Millipore Immobilon), dried, imaged on a Bio-
rad image. Densitometric analysis was performed using 
Quantity One software (Bio Rad).

RNA extraction, library preparation, and RNA sequencing
Two ventral halves of spinal cords from TDP-43WT and 
TDP-43G298S transgenic animals and one littermate con-
trol for each line were dissected and transferred immedi-
ately into RNAlater storage reagent (Life Technologies). 
Total RNA from spinal cord tissues was extracted using 
the RNeasy Mini Kit (Qiagen). Total RNA from human 
tissue, QBI-293 stable cell lines, and HEK-293 cells were 
extracted using Monarch Total RNA Miniprep Kit (New 
England BioLabs, T2010S). To prepare RNA-Seq librar-
ies, the TruSeq Stranded Total RNA Library Prep Kit 
(Illumina) was employed. Subsequently, the sample 
libraries were sequenced on an Illumina HiSeq for spi-
nal cord samples and NextSeq for cultured cells. The 
obtained data was transformed into FASTQ files after 
demultiplexing.

RT-PCR and primers
Mouse animals were genotyped using the following 
primers: 5’- ​C​G​G​A​A​G​A​C​G​A​T​G​G​G​A​C​G​G TG, 5’-​G​
C​C​A​A​A​C​C​C​C​T​T​T​G​A​A​T​G​A​C​C​A, and 5’- ​A​A​G​A​T​G​
G​C​A​C​G​G​A​A​G​T​C​T​A​A​C​C​A​T​G, was used to generate 
a 386 bp band (spanning TARDBP exons 2, 3, and 4) in 
transgenic mice only and a 241 bp internal control band 
in all mice. LunaScript RT SuperMix Kit was used for 
cDNA synthesis. The following primers were used for 
RT-PCR in mouse tissue: Ddi2-F1: ​C​A​G​A​G​T​G​T​G​C​T​
C​G​T​T​T​G​G​C​A, Ddi2-R1: ​G​A​C​T​C​G​T​C​G​G​G​C​T​A​C​C​A​
A​C, product: 284 bp (Full) or 222 bp (Skip); Mrpl45-F1: ​
A​C​A​C​T​G​T​T​T​T​C​C​G​G​A​C​A​T​G​G​T, Mrpl45-R1: ​T​C​G​
T​A​C​T​C​C​T​C​C​C​A​G​G​G​T​T​T, product: 384  bp (Full) or 
210  bp (Skip); Psmd14-F1: ​G​A​G​C​C​A​G​G​T​C​C​T​T​G​T​T​

G​A​G​T, Psmd14-R1: ​T​T​G​G​C​T​T​G​G​A​A​C​A​C​T​G​G​A​T​C​
A, product: 473 bp (Full) or 353 bp (Skip). The following 
primers were used for PCR in human cells: HYOU1-F2: ​
T​T​C​T​A​T​G​A​C​A​T​G​G​G​C​T​C​A​G​G​C, HYOU1-R2: ​A​C​T​
G​C​A​T​C​T​C​G​G​A​C​G​A​C​A​A​A, product: 635  bp (Full) or 
500  bp (Skip); NUP93-F2: ​G​A​G​G​C​T​G​A​A​G​A​A​C​A​T​G​
G​C​A​C, NUP93-R2: ​T​C​C​C​A​C​A​A​A​G​C​A​T​G​G​C​A​C​T​T, 
product: 496  bp (Full) or 411  bp (Skip); XPNPEP1-F2: ​
G​T​T​G​G​T​G​T​G​G​A​C​C​C​C​T​T​G​A​T, XPNPEP1-R2: ​G​A​C​
C​C​A​C​A​C​C​T​T​C​T​C​C​C​T​T​G, product: 522  bp (Full) or 
426  bp (Skip); MYBBP1A-F1: ​A​A​A​G​T​C​T​G​G​G​A​G​A​G​A​
A​G​C​C​C, MYBBP1A-R1: ​C​G​C​A​G​A​G​C​C​T​T​C​T​C​C​T​T​C​T​
G, product: 586 bp (Full) or 499 bp (Skip). The following 
primers were used for RT-PCR in human cells and brain 
samples: STMN2-F1: ​C​T​G​C​A​C​A​T​C​C​C​T​A​C​A​A​T​G​G​C, 
STMN2-R1: ​C​A​C​A​A​G​C​C​G​C​A​T​T​C​A​C​A​T​T​C​A, prod-
uct: 167 bp; HYOU1-F1: ​C​C​G​T​A​T​G​C​A​C​C​A​T​T​G​T​G​A​C​
C, HYOU1-S5: ​C​T​G​C​T​C​A​A​T​C​T​C​A​T​C​C​T​G​T​G​C, prod-
uct: 290 bp; NUP93-S2: ​G​G​T​C​A​T​A​T​T​G​A​T​A​G​A​G​C​T​T​T​
T​G​A​T​A​T​C​A​G​G, NUP93-R1: ​T​G​T​A​C​T​G​A​C​A​G​T​G​T​G​C​
C​G​A​C, product: 304 bp; XPNPEP1-S3: ​G​C​C​T​G​G​A​T​T​A​
C​A​C​A​G​G​G​C​T​A​T​T​T, XPNPEP1-R1: ​A​T​T​C​G​G​C​T​T​C​C​
A​G​A​C​C​C​A​A​G, product: 177 bp; MYBBP1A-S2: ​C​T​G​C​A​
G​C​T​A​A​T​T​C​T​G​G​A​T​G​A​C​A​A​G, MYBBP1A-R1: ​C​G​C​A​G​
A​G​C​C​T​T​C​T​C​C​T​T​C​T​G, product: 320 bp. Differences in 
RT-PCR product sizes were resolved on 4% agarose gels.

Percent splice-in bioinformatic analysis
FASTQ files were aligned using STAR [87] and a filtered 
splice junction file was processed to calculate percent of 
splicing (PSI) values following methodology described 
in ASCOT [71, 72]. Briefly, FASTQ files were aligned to 
the mm10 (mouse) or hg38 (human) genomes to gener-
ate BAM files. BAM files were converted into bigWig 
files using Megadepth [88]. GTF transcript annotations 
from GENCODE were used to calculate gene expres-
sion values and perform exon sequence analyses (GEN-
CODE v45 was used for human, GENCODE M34 was 
used for mouse). We calculated the 5´PSI or 3´as the 
ratio between the number of mapped splice junctions 
from one exon to another over the total amount of splice 
junctions including that exon the 5´or 3´splicing site. 
PSI values between controls and TDP-43 overexpres-
sion were compared and visualized using UCSC genome 
browser [89]. Skiptic exon coordinates and PSI values are 
recorded in Supplementary Table 1. Custom code used 
in this project is available on Github: https://github.com/
rcarmen1/skipticexonscomparisons/tree/main.

Calculation of repeat frequency
Calculation of UG/GU repeat frequency around a 
+/- 400  bp window surrounding skiptic exons in 
Supplementary Fig.  5 was done by (i) masking all 
“UG” and “GU” as “YY”; (ii) replacing all “A,” “C,” 

https://github.com/rcarmen1/skipticexonscomparisons/tree/main
https://github.com/rcarmen1/skipticexonscomparisons/tree/main
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“T,” “G” as “N”; (iii) identifying all pentamer and lon-
ger repeat sequences allowing for a single N insertion 
(i.e., “YYYYY,” “YYYYYY,” “YYYYYYY,” “YNYYYY,” 
“YYNYYY,” “YYYNYY,” “YYYYNY,” …); (iv) assigning the 
“Y”s in sequences from step 3 a value of 1 and all other 
sequences a value of 0; (v) aligning all sequences to the 
3′SS and 5′SS, applying a vertical summation, and then 
dividing by the total number of sequences to obtain the 
repeat frequency per nucleotide position upstream and 
downstream of the skiptic exon.

Analysis of exon skipping in GTEx human samples
Splice junctions from the GTEx archive were queried 
using the Snaptron Web Services Interface and only 
brain, nerve and pituitary samples were collected [69, 73]. 
PSI values for skipped junctions were calculated as previ-
ously mentioned. We used the normalized quantification 
of transcripts per million (TPM) from the GTEx con-
sortium (GTEx_Analysis_2017-06-05_v8_RSEMv1.3.0) 
to correlate PSI values and TDP-43 expression level 
[73]. Plots from different brain regions were made using 
RStudio.

Protein structure modeling
Wildtype mRNA sequences for XPNPEP1 
(ENST00000502935.6), NUP93 (ENST00000308159.10), 
MYBBP1A (ENST00000254718.9) and HYOU1 
(ENST00000617285.5), were obtained from the GEN-
CODE database and protein sequences were identified 
by translating the mRNA sequences with or without the 
exon of interest [90]. Wildtype structures for NUP93 and 
HYOU1were downloaded from the AlphaFold Protein 
Structure Database. All other structures were generated 
using the Alpha Fold Monomer v2.0 pipeline (version 
2.2.0) from the amino acid sequences on the Rockfish 
cluster at Johns Hopkins University [80, 91]. PyMOL was 
used to visualize the structures (Schrödinger, LLC. The 
PyMOL Molecular Graphics System, Version 2.5.4, 2015).

Statistical analysis
Mouse data was analyzed using Microsoft Excel and 
GraphPad Prism software, with P values calculated 
using unpaired Student’s t tests. P values less than 0.05 
were considered significant. All quantitative values were 
reported as mean ± standard deviation (SD).
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