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Conditional BDNF release under pathological
conditions improves Huntington’s disease
pathology by delaying neuronal dysfunction
Albert Giralt1,2,3, Olga Carretón1,2,3, Cristina Lao-Peregrin4, Eduardo D Martín4 and Jordi Alberch1,2,3*

Abstract

Background: Brain-Derived Neurotrophic Factor (BDNF) is the main candidate for neuroprotective therapy for
Huntington’s disease (HD), but its conditional administration is one of its most challenging problems.

Results: Here we used transgenic mice that over-express BDNF under the control of the Glial Fibrillary Acidic
Protein (GFAP) promoter (pGFAP-BDNF mice) to test whether up-regulation and release of BDNF, dependent on
astrogliosis, could be protective in HD. Thus, we cross-mated pGFAP-BDNF mice with R6/2 mice to generate a
double-mutant mouse with mutant huntingtin protein and with a conditional over-expression of BDNF, only under
pathological conditions. In these R6/2:pGFAP-BDNF animals, the decrease in striatal BDNF levels induced by mutant
huntingtin was prevented in comparison to R6/2 animals at 12 weeks of age. The recovery of the neurotrophin
levels in R6/2:pGFAP-BDNF mice correlated with an improvement in several motor coordination tasks and with a
significant delay in anxiety and clasping alterations. Therefore, we next examined a possible improvement in
cortico-striatal connectivity in R62:pGFAP-BDNF mice. Interestingly, we found that the over-expression of BDNF
prevented the decrease of cortico-striatal presynaptic (VGLUT1) and postsynaptic (PSD-95) markers in the R6/2:
pGFAP-BDNF striatum. Electrophysiological studies also showed that basal synaptic transmission and synaptic
fatigue both improved in R6/2:pGAP-BDNF mice.

Conclusions: These results indicate that the conditional administration of BDNF under the GFAP promoter could
become a therapeutic strategy for HD due to its positive effects on synaptic plasticity.
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Background
Huntington’s disease (HD) is an inherited neurodegen-
erative disorder, which results from the expansion of a
CAG trinucleotide repeat in the huntingtin (htt) gene
[1,2]. Mutant htt (mhtt) causes cortical atrophy and the
preferential death of medium-sized spiny neurons in the
striatum. The demise of these neurons causes motor
and cognitive dysfunction [3]. In exon-1 and full-length
mouse models of HD, a progressive decline in cortico-
striatal synaptic function that correlates with the pathol-
ogy has been described [4,5]. Thus, molecules regulating

cortico-striatal connectivity would be extremely relevant
to HD therapy perspectives.
Brain-Derived Neurotrophic Factor (BDNF) is an

important neuroprotective factor for the preservation of
medium-sized spiny neurons in the striatum [6]. How-
ever, the trophic support of striatal neurons is provided
by cortical afferents [7,8]. A reduction in BDNF levels
has been described in HD patients [9,10] and similar
results have been found in several animal models
[11-17]. Furthermore, the transport and function of
BDNF are also disrupted in HD [18,19]. Thus, as one
pathogenic mechanism leading to dysfunction and loss
of striatal neurons in HD might be the reduction in
BDNF levels, its administration should improve these
alterations [20-22]. In fact, BDNF is a strong candidate
for neuroprotective therapies, as it has been tested in
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acute [23,24] and in transgenic mouse models [12,25] of
HD. However, the main challenge is to find the way to
administer BDNF chronically and conditionally to the
target neurons [22,26-28].
We previously demonstrated in an excitotoxic model

of HD that transgenic astrocytes engineered to over-
express BDNF under the control of the GFAP promoter,
when grafted in wt mice, release higher levels of BDNF
than control astrocytes [23]. This enhanced release of
BDNF protects striatal neurons. Here we tested whether
conditional and pathology-dependent delivery of BDNF
could be neuroprotective in a transgenic mouse model
of HD. We cross-mated R6/2 [29] with pGFAP-BDNF
mice [23] to obtain double-mutant animals: R6/2:
pGFAP-BDNF. Our results show that BDNF over-
expression from striatal astrocytes improved HD pheno-
type by preventing cortico-striatal synaptic dysfunction.

Results
GFAP up-regulation increases BDNF levels in the striatum
of R6/2:pGFAP-BDNF mice
In this study, we crossed mice that over-express BDNF
under the control of the GFAP promoter (pGFAP-
BDNF) [23] with the HD mouse model R6/2 [29]. With
this procedure we obtained double-mutant R6/2:
pGFAP-BDNF mice, which would express BDNF
depending on the degree of astrogliosis.
First, we checked whether 12-week-old R6/2 and R6/2:

pGFAP-BDNF mice displayed astrogliosis by performing
immunohistochemistry against GFAP. The results
showed clear astroglial reactivity in the striatum of HD
mouse models (Figure 1A). Accordingly, quantification
by Western blot showed a significantly equal increase of
striatal GFAP in R6/2 and R6/2:pGFAP-BDNF mice
(Figure 1B). As previously observed in the excitotoxic
model [23], this neuropathological hallmark induced an
up-regulation of the pGFAP-BDNF transgene activity
only in R6/2:pGFAP-BDNF mice, which correlates with
significantly higher striatal BDNF levels than in R6/2
mice (Figure 1C). These results validated our model
because although both, R6/2 and R6/2:pGFAP-BDNF
mice displayed equal levels of striatal GFAP, the pre-
sence of the pGFAP-BDNF transgene only in the R6/2:
pGFAP-BDNF mice prompted an increase and recovery
of striatal BDNF levels in these mice relative to R6/2
mice who lacked the pGFAP-BDNF transgene.

R6/2:pGFAP-BDNF mice show improvements in motor
coordination
We next evaluated motor coordination in wt, pGFAP-
BDNF, R6/2 and R6/2:pGFAP-BDNF mice using the
rotarod test. Disturbed motor coordination was observed
in R6/2, compared to wt and pGFAP-BDNF mice at 9-
10 weeks of age, at 16 rpm (Figure 2A) and 24 rpm

(Figure 2B) and steadily worsened up to 12 weeks of age
(Figure 2A-B). However, motor coordination deficits in
R6/2:pGFAP-BDNF mice advanced with significantly
less severity than in R6/2 mice (Figure 2A-B).
To further confirm better motor coordination in R6/2:

pGFAP-BDNF than in R6/2 mice, we also evaluated
their performance on the balance beam. The test with
the balance beam was performed at 7, 10 and 12 weeks
of age. The distance covered was the parameter used to
check motor coordination. The results showed that per-
formance was strongly affected in both R6/2 and R6/2:

Figure 1 Astrogliosis caused by the presence of mutant
huntingtin induces preservation of striatal BDNF protein levels
in R6/2:pGFAP-BDNF mice. Striatal GFAP immuno-reactivity in 12-
week-old wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice (A).
The levels of GFAP (B) and mature BDNF (C) were analyzed by
Western blot of protein extracts obtained from striata of 12-week
old wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice.
Representative immunoblots are also shown (B-C). Note loading
control is different in each blot due to the huge difference on
molecular weight of GFAP and mature BDNF and different blot
characteristics. Values are expressed as mean ± s.e.m. Data were
analyzed by one-way ANOVA: * p < 0.05 and *** p < 0.001,
compared with the wt genotype; $ p < 0.05 and $$$ p < 0.001,
compared with the pGFAP-BDNF genotype; and # p < 0.05,
compared with the R6/2 genotype (n = 7-12/genotype). Scale bar
50 μm.
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Figure 2 Preservation of striatal BDNF levels in R6/2:pGFAP-BDNF mice is associated with an improvement of their motor
performance over R6/2 mice. Motor coordination and balance were analyzed by performing the rotarod task at 16 (A) and 24 (B) rpm in 9-,
10-, 11- and 12-week-old wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice. Motor coordination and balance were further assessed by the
balance beam test at 7, 10 and 12 weeks of age (C). Ataxia and gait abnormalities were assessed by the footprint test, analyzing front paw
length (D) and paw overlap (E) at 7, 10 and 12 weeks of age in wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice. Values are expressed as
mean ± s.e.m. Data were analyzed by one-way ANOVA at different stages of the disease’s progression in the case of the footprint and the
balance beam tests because different cohorts of animals were used. In the case of the rotarod task, two-way ANOVA with repeated measures
was performed. For clarity, in A and B only statistical comparisons between R6/2 and R6/2:pGFAP-BDNF mice are depicted. * p < 0.05, ** p <
0.01 and *** p < 0.001, as compared to wt mice; $ p < 0.05, $$ p < 0.01 and $$$ p < 0.001, as compared to pGFAP-BDNF mice; and # p < 0.05
and ## p < 0.01, as compared to R6/2 mice (n = 10-12/genotype).
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pGFAP-BDNF mice from 7 weeks of age (Figure 2C),
before any overt phenotype is detectable. Interestingly,
these alterations worsened in R6/2 but not in R6/2:
pGFAP-BDNF mice, resulting in a significantly higher
ability to cross the beam of R6/2:pGFAP-BDNF mice
than of R6/2 mice at 12 weeks of age (Figure 2C).
Ataxia and gait abnormalities were evaluated by the

footprint test. We found that both R6/2 and R6/2:
pGFAP-BDNF mice displayed significant abnormalities
in their front paw length (Figure 2D) and paw overlap
(Figure 2E), when compared with their controls. Front
paw length was significantly shorter in both R6/2 and
R6/2:pGFAP-BDNF mice from 7 weeks of age, when
loss of body weight was not yet evident (Figure 3A). No
significant differences were observed between R6/2 and
R6/2:pGFAP-BDNF mice (Figure 2D). On the other
hand, paw overlap was significantly higher at 12 weeks
of age in both R6/2 and R6/2:pGFAP-BDNF mice than
in wt and pGFAP-BDNF mice (Figure 2E). In conclu-
sion, the footprint test showed that gait and ataxia
abnormalities were disturbed equally in R6/2 and R6/2:
pGFAP-BDNF mice.

The onset of the clasping reflex is ameliorated in R6/2:
pGFAP-BDNF mice
Next, we studied additional phenotype alterations char-
acteristic of R6/2 mice, such as loss of body weight and
muscular strength and the development of the clasping
reflex. Both R6/2 and R6/2:pGFAP-BDNF mice devel-
oped a normal body weight increase, compared with wt
and pGFAP-BDNF mice, up to 10 weeks of age (Figure
3A). However, at this age R6/2 and R6/2:pGFAP-BDNF
mice stopped gaining body weight; and at 11 weeks of
age, both began to lose weight, with no significant dif-
ferences between them (Figure 3A). Muscular strength
was evaluated by the hiring wire test. This test showed
that the muscular strength of R6/2 and R6/2:pGFAP-
BDNF mice is normal, compared with wt and pGFAP-
BDNF mice, up to 12 weeks of age, when both groups
showed disorders in this parameter, as shown by a sig-
nificant increase in falls from the grid (Figure 3B). On
the other hand, both R6/2 and R6/2:pGFAP-BDNF mice
steadily increased their clasping behavior (Figure 3C).
However, R6/2 mice showed an early onset (8 weeks of
age) of clasping behavior, whereas R6/2:pGFAP-BDNF
mice started at 11 weeks of age (Figure 3C), suggesting
significant delay of the associated neuronal dysfunction.

Anxiety alterations are delayed in R6/2:pGFAP-BDNF mice
To further characterize the behavioral phenotype
improvements in R6/2:pGFAP-BDNF mice, compared to
R6/2 mice, we also used the plus maze and the open
field paradigms, which mainly check anxiety levels and
spontaneous locomotor activity, respectively (see

Figure 3 The transgene pGFAP-BDNF delays clasping reflex
alterations in R6/2 mice. Body weights (A) of wt, pGFAP-BDNF,
R6/2 and R6/2:pGFAP-BDNF mice were monitored weekly from 5 to
13 weeks of age. Muscular strength (B) was measured at 7, 10 and
12 weeks of age by the hiring wire test. Clasping level (C) was
assessed weekly from 7 to 13 weeks of age. Values are expressed as
mean ± s.e.m. Data were analyzed by two-way ANOVA with
repeated measurements for body weight and muscular strength.
Clasping level was measured by the U Mann-Whitney test. * p <
0.05, ** p < 0.01 and *** p < 0.001, as compared to wt mice; $ p <
0.05, $$ p < 0.01 and $$$ p < 0.001, as compared to pGFAP-BDNF
mice; and # p < 0.05, as compared to R6/2:pGFAP-BDNF mice (n =
10-12/genotype).
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Methods). The results obtained in the plus maze indi-
cated that at all ages analyzed (7, 10 and 12 weeks of
age) R6/2 mice spent significantly more time in the
open arms than wt and pGFAP-BDNF mice did (Figure
4A). This result suggests aberrant, decreased anxiety
levels, as described elsewhere for these mice [30]. On
the other hand, R6/2:pGFAP-BDNF mice showed a sig-
nificant delay in the appearance of these alterations,
which was not significant relative to wt mice until 12
weeks of age (Figure 4A). Thus, R6/2:pGFAP-BDNF
mice showed an improvement in anxiety-like disorders.

To study the locomotor activity and exploration levels,
we also performed the open field test. As previously
described in HD mouse models [31,32], R6/2 and R6/2:
pGFAP-BDNF mice showed a progressive decrease in
spontaneous locomotor and exploratory activity in the
open field, which reach significance relative to wt and
pGFAP-BDNF mice at 12 weeks of age (Figure 4B).
However, this significant trend to hypoactivity was
equally developed in both R6/2 and R6/2:pGFAP-BDNF
mice. These results suggest that less anxiety-like beha-
vior in the plus maze shown by HD transgenic animals

Figure 4 The transgene pGFAP-BDNF delays the onset of anxiety disturbances in R6/2 mice. The plus maze paradigm (A) was used to
evaluate anxiety levels at 7, 10 and 12 weeks of age in wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice. The percentage of time spent on the
open arms was monitored. The open field paradigm (B) was performed to check spontaneous locomotor and exploratory activities at 7, 10 and
12 weeks of age in wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice by recording the distance covered during 10 min. Values are expressed
as mean ± s.e.m. Data were analyzed by one-way ANOVA because different cohorts of animals were used for the different stages of the disease’s
progression. * p < 0.05 and ** p < 0.01, as compared to wt mice; $ p < 0.05 and $$ p < 0.01, as compared to pGFAP-BDNF mice (n = 8-12/
genotype).
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is unlikely to be caused by higher exploratory activity.
Furthermore, the results indicate that the normalization
of anxiety levels observed in R6/2:pGFAP-BDNF mice is
not prompted by simple recovery of spontaneous loco-
motor activity.

Loss of striatal volume and soma size of calbindin
neurons and nuclear inclusions formation are ameliorated
in R6/2:pGFAP-BDNF mice
As R6/2:pGFAP-BDNF mice showed greater preserva-
tion of their striatal-dependent motor coordination than
R6/2 mice did, we next evaluated whether striatal neu-
ropathology correlated with these behavioral results.
First, although the pGFAP-BDNF transgene was
expressed in the whole brain in R6/2:pGFAP-BDNF
mice, this expression pattern was not enough to recover
the reduction of total brain weight induced by mutant
huntingtin (in grams; wt: 0.463 ± 0.013; pGFAP-BDNF:
0.455 ± 0.005; R6/2: 0.396 ± 0.014; R6/2:pGFAP-BDNF:
0.397 ± 0.020; p value < 0.05 for R6/2 and R6/2:pGFAP-
BDNF mice compared with wt and pGFAP-BDNF
mice). In contrast, stereological estimation of the striatal
volume revealed that R6/2:pGFAP-BDNF mice have lar-
ger striata than R6/2 mice did (Figure 5A). Next we
checked whether the striatal volume preservation found
in R6/2:pGFAP-BDNF mice was due to greater survival
of striatal projection neurons. Stereological counting of
the calbindin-positive projection neurons in all groups
indicated that both R6/2 and R6/2:pGFAP-BDNF mice
have a similar significant decrease in the number of
these neurons, in comparison with wt and pGFAP-
BDNF mice (Figure 5B). However, when we measured
the soma volume of calbindin-positive neurons, we
found a significant volume improvement in R6/2:
pGFAP-BDNF over R6/2 mice (Figure 5C). Finally, we
wanted to check the number of Nuclear Inclusions
(NIIs) in the striatum from our mouse models (Figure
5D). We observed that density of NIIs were lower in
R6/2:pGFAP-BDNF relative to R6/2 mice striata (Figure
5D).

Effect of BDNF over-expression on levels of DARPP-32
and enkephalin in the R6/2:pGFAP-BDNF striatum
Enkephalin protein levels fall strongly in human HD
brains and in mouse models [3,25,33,34]. Therefore, we
used a specific antibody for Western blot that recog-
nizes two enkephalin-positive bands at ~30 kDa [35] as
previously described [36]. Our results show that R6/2:
pGFAP-BDNF mice showed significant improvement in
striatal enkephalin protein levels, compared with R6/2
mice (Figure 6A). To analyze the biochemical improve-
ments in the striatum of R6/2:pGFAP-BDNF mice
further, DARPP-32 protein levels were also analyzed in
the striata from all genotypes (Figure 6B). DARPP-32

protein levels were significantly higher in R6/2:pGFAP-
BDNF mice than in R6/2 ones (Figure 6B).

Cortico-striatal synapses are preserved in R6/2:pGFAP-
BDNF mice
As we found a preservation of the volume of striatal
projection neurons in R6/2:pGFAP-BDNF mice, but not
of their number, in comparison with R6/2 animals, we
hypothesized that mainly subtle micro-structural
changes were involved in R6/2:pGFAP-BDNF mouse
phenotype improvements. Thus, we additionally tested
the state of cortico-striatal connectivity by counting
VGLUT1- and PSD-95-positive particle densities in the
striatum of wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-
BDNF 12-week-old mice.
Confocal image analysis of coronal sections at 12

weeks of age showed that only R6/2 mice had a signifi-
cant decrease in striatal VGLUT1- (Figure 7A) and
PSD-95-positive (Figure 7B) particle density, in compari-
son with wt mice. However, R6/2:pGFAP-BDNF mice
displayed highly intact striatal VGLUT1- and PSD-95-
positive particle density, compared with wt mice (Figure
7). These results suggest that both excitatory terminals
(VGLUT1) and dendritic spines (PSD-95) are preserved
in R6/2:pGFAP-BDNF mice. Moreover, these results are
in line with the volume preservation of the whole stria-
tum and striatal calbindin-positive neurons in R6/2:
pGFAP-BDNF mice, compared with R6/2 ones.

Intact cortico-striatal synaptic transmission and resistance
to synaptic fatigue in R6/2:pGFAP-BDNF mice
Due to the improvement in the number of synaptic par-
ticles in R6/2:pGFAP-BDNF mice over R6/2 mice, we
next examined glutamatergic synaptic transmission in
the different groups. We made extracellular recordings
of field potentials in acute cortico-striatal brain slices.
As described in previous studies, single-pulse stimula-
tion of striatal slices elicited a characteristic response
with different components [37-39]. One of these compo-
nents, the population spike (PS), reflects excitatory
monosynaptic transmission in a population of striatal
neurons due to endogenous glutamate release upon
electrical stimulation of glutamate-containing fibers.
This component is mediated by activation of a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
glutamate receptors [38]. First, we analyzed basal synap-
tic transmission by applying isolated stimuli of increas-
ing intensity. Extracellular field recordings showed that
R6/2 mice tended to exhibit decreased PS responses,
which were statistically significant at high stimulus
strengths (Figure 8A; V = 10 V, p < 0.01). Interestingly,
the amplitude of R6/2:pGFAP-BDNF PS responses was
not significantly different from PS response in wt or
pGFAP-BDNF mice (Figure 8A), indicating that the
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Figure 5 Striatal neuropathology is improved in R6/2:pGFAP-BDNF mice compared to R6/2 mice. Striatal volume (A) was stereologically
measured in 12-week-old wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice. A representative microphotograph of coronal sections
immunostained for calbindin is depicted (A). The number of calbindin-positive projecting neurons (B) was stereologically counted in all groups.
The soma volume of calbindin-positive projecting neurons (C) was stereologically calculated in all genotypes by the nucleator method. Density
of EM48-positive Nuclear Inclusions (NIIs) were stereologically counted in R6/2 and R6/2:pGFAP-BDNF mice (D). Values are expressed as mean ±
s.e.m. Data were analyzed by one-way ANOVA or unpaired t-test. * p < 0.05 and ** p < 0.01, as compared to wt mice; # p < 0.05, as compared
to R6/2 mice (n = 5-6/genotpye). Scale bar (A) 1 mm and (D) 10 μm.

Giralt et al. Molecular Neurodegeneration 2011, 6:71
http://www.molecularneurodegeneration.com/content/6/1/71

Page 7 of 16



efficacy of excitatory synaptic inputs is greater in R6/2:
pGFAP-BDNF mice. Since mhtt has been shown to
impair synaptic transmission in the cortico-striatal path-
way [40,41], we next examined synaptic fatigue by
means of PS recordings evoked by a four-stimulus train
(100 Hz). After the second stimulus in the train, the PS
response was significantly smaller in R6/2 slices than in
wt slices (Figure 8B, p < 0.05). Interestingly, the PS
response in pGFAP-BDNF and R6/2:pGFAP-BDNF mice
was significantly greater than in wt and R6/2 mice (Fig-
ure 8B), indicating that R6/2:pGFAP-BDNF mice were
more resistant to synaptic fatigue.
We next investigated cortico-striatal synaptic plasticity

by inducing LTP by high-frequency conditioning tetanus
(see Methods). Baseline responses were monitored for
10-30 min before conditioning and were found to be
stable. Tetanus conditioning revealed a marked differ-
ence in the ability of transgenic HD mice to support
LTP, with strengthening of PS significantly low in R6/2
and R6/2:pGFAP-BDNF mice, whereas wt and pGFAP-
BDNF mice had a significant PS response (Figure 8C, p
< 0.001).

Discussion
Here we demonstrate that conditional BDNF production
and release from astrocytes is a safe and neuroprotective
method to improve the R6/2 mice phenotype. Double-
mutant R6/2:pGFAP-BDNF mice show improvements in
striatal-dependent behavior, anxiety alterations and
clasping levels, compared with R6/2 mice. In support of
this, R6/2:pGFAP-BDNF mice show associated signifi-
cant preservation of neuronal architecture, which corre-
lates with improved cortico-striatal connectivity.
The neurotrophin BDNF has been widely put forward

as a possible therapeutic molecule for HD treatment
[20,22]. However, the key challenge in the field of
growth factor therapy is drug delivery to the central ner-
vous system. Another important consideration in the
design of growth factor therapies for neurodegenerative
disorders is the need for extended periods of treatment
[42]. To date, there are no successful systems for deli-
vering BDNF, because it does not cross the blood-brain
barrier via peripheral administration [43,44]. On the
other hand, approaches such as infection/lipotransfec-
tion and cell therapy are still inaccessible because of
their collateral toxicity effects and the likelihood of their
inducing aberrant proliferations, respectively. In addi-
tion, they are invasive procedures [27,45].
Both R6/2 mice [46-48] and HD human patients [49]

show a striatal increase in astrogliosis reactivity with an
associated up-regulation of GFAP levels. In the present
study, we took advantage of striatal astrogliosis and the

Figure 6 The down-regulation of DARPP-32 and enkephalin
protein levels in R6/2 mice is improved in R6/2:pGFAP-BDNF
mice. The levels of enkephalin (A) and DARPP-32 (B) were analyzed
by Western blot of protein extracts obtained from striatum of 12-
week-old wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice.
Representative immunoblots are shown. Values are expressed as
mean ± s.e.m. Data were analyzed by one-way ANOVA. ** p < 0.01
and *** p < 0.001, as compared to wt mice; $ p < 0.05, $$ p < 0.01
and $$$ p < 0.001, as compared to pGFAP-BDNF mice; and # p <
0.05, as compared to R6/2 mice (n = 7-12/genotype).
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Figure 7 Preservation of cortico-striatal connectivity in R6/2:pGFAP-BDNF mice. Immunohistochemical staining against the pre-synaptic
marker VGLUT1 (A) and the post-synaptic marker PSD-95 (B) was performed in 12-week-old wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice.
The images were taken by confocal microscopy. VGLUT1- (A) and PSD-95- (B) positive particles were counted by the ImageJ software and
represented in a graph as density of particles/field. Values are expressed as mean ± s.e.m. Data were analyzed by one-way ANOVA. * p < 0.05
and ** p < 0.01 as compared to wt mice; $ p < 0.05 and $$ p < 0.01 as compared to pGFAP-BDNF mice; # p < 0.05 as compared to R6/2 mice
(n = 4/group). Scale bar 15 μm.
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consequent up-regulation of GFAP promoter activity in
R6/2 mice to produce and release BDNF physiologically.
We accomplished this aim by crossing R6/2 mice with
pGFAP-BDNF mice and obtaining double-mutant mice
(R6/2:pGFAP-BDNF). The transgene works in a condi-
tional fashion because it depends on the presence of
astrogliosis, since pGFAP-BDNF mice did not show any
increase in striatal BDNF levels compared with wt mice.
Therefore, the increase in striatal BDNF in R6/2:
pGFAP-BDNF mice, in comparison with R6/2 mice, was
due to a conditional release, with auto-regulated
mechanisms and only when it is pathologically required.
In this model, astrogliosis enables striatal BDNF

expression to be significantly restored to close to control
levels. Previous studies employed a Bdnf transgene dri-
ven by the promoter for the alpha subunit of Ca2+/cal-
modulin-dependent kinase II to over-express BDNF in
the forebrain of R6/1 [12] and YAC128 [34] mice, show-
ing high over-expression of BDNF that slowed the pro-
gression of the disease. Intriguingly, the beneficial
effects observed in the present study are very similar to
those described in these studies. Therefore, in an HD
context, a small increase in BDNF levels is enough to
provide a significant symptomatic improvement, which
demonstrates the high relevance of this neurotrophin in
the pathophysiology of the disease. This emphasizes the
need to control the amount of BDNF delivered, since
excessive chronic production and delivery of the neuro-
trophin to the brain may induce neuronal dysfunction
and toxicity [50,51].
The behavioral characterization of R6/2:pGFAP-BDNF

mice showed that the dysfunctions in motor coordina-
tion, evaluated by the rotarod and the balance beam
tests, were delayed and improved, suggesting that the
preservation of striatal BDNF levels had a strong posi-
tive effect on these mice. These results provide further
support for the importance of BDNF in motor coordina-
tion function [52] and specifically of the striatum-depen-
dent component [7]. Intriguingly, we did not find any
changes in gait and locomotor deficits when mice per-
formed the footprint and open field tests, which indi-
cated that the improved striatal BDNF levels in R6/2:
pGFAP-BDNF mice were not enough to ameliorate
these symptoms. On the other hand, not only was
motor coordination enhanced in R6/2:pGFAP-BDNF,
but other neurological alterations typical of R6/2 mice
were also improved, such as anxiety disturbances and
the clasping reflex [29,30]. The improvement in anxiety
alterations corroborated previous studies showing that
one molecular mechanism able to modulate these pro-
cesses was BDNF [53,54]. On the other hand, these
results do not rule out possible functional improvements

Figure 8 The transgene pGFAP-BDNF counteracts synaptic
fatigue in cortico-striatal connections. Population spike (PS)
amplitudes for a given range of stimulus intensities are shown from
12-week-old wt, pGFAP-BDNF, R6/2 and R6/2:pGFAP-BDNF mice (A).
Synaptic fatigue using PS recordings was evoked by a four-stimulus
train at 100 Hz (B). The PS response at the fourth initial stimulus was
calculated as the percentage of the first PS amplitude. Long-term
potentiation (LTP) was induced by high-frequency conditioning
tetanus (C). Values are expressed as mean ± s.e.m except for C,
where error bars are deleted for greater clarity. ** p < 0.01 and ***
p < 0.001, for 100% control; # p < 0.05 and ## p < 0.01 for R6/2
mice (n = 8 slices/genotype (at least 3 animals in each case)).
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in other brain regions involved in the regulation of anxi-
ety, such as the limbic-medial prefrontal circuit or the
amygdala [55], in R6/2:pGFAP-BDNF mice and point to
the need for further studies on this possibility.
Our data support the idea that neural dysfunction is a

critical and early point in the pathophysiology of HD
[56,57]. We found that the loss of soma volume in R6/2
projection neurons [40,58] improved in R6/2:pGFAP-
BDNF mice. Interestingly, we also detected an ameliora-
tion of striatal NIIs density in R6/2:pGFAP-BDNF mice
which is in accordance with their improved cellular phe-
notype. Moreover, the density of glutamatergic cortical
terminals (VGLUT1-positive) and dendritic spines (PSD-
95-positive) in the striatum were both down-regulated
in R6/2 striata, but preserved in R6/2:pGFAP-BDNF
striata. These positive changes in synaptic markers and
neuronal soma volume correlated with an absence of
basal synaptic transmission dysfunction and a greater
resistance to synaptic fatigue in R6/2:pGFAP-BDNF
mice than in R6/2 mice. Intriguingly, pGFAP-BDNF
mice showed a significant increase in synaptic fatigue
relative to wt mice. This result suggests a subtle increase
on BDNF levels in those mice which we were unable to
detect. On the other hand, our results corroborate pre-
vious studies showing that BDNF application increases
glutamatergic currents [59] and the number of dendritic
spines [15,60]. However, cortico-striatal LTP alterations
did not improve in R6/2:pGFAP-BDNF mice. Although
striatal BDNF levels were higher in R6/2:pGFAP-BDNF
mice than in R6/2, they did not reach wt levels. This
result could explain the lack of improvement in LTP
expression in cortico-striatal slices from R6/2:pGFAP-
BDNF mice. In fact, Simmons and others showed that
there was a reversal of the impairment in hippocampal
LTP in knock-in mice when levels of BDNF were com-
pletely recovered [61]. These findings confirm the need
for complete integrity in the BDNF pathway in order to
regulate cortico-striatal LTP [62].
The finding that BDNF released from transgenic astro-

cytes in R6/2:pGFAP-BDNF mice improves and regu-
lates their striatal-dependent behavior and synaptic
transmission corroborates the recent hypothesis that
astrocytes are involved in neuro-plasticity phenomena
such as the regulation and strengthening of neurosignals
and connectivity of neuronal networks, some of which
are likely to be involved in cognitive functions at least
[63-65]. Thus, it is important to highlight that our
results suggest that astrocytes could modulate some of
these plasticity processes via production and delivery of
BDNF, probably into the excitatory synapse. This is pos-
sible since astrocytes are capable, though at low levels,
of producing and releasing BDNF per se [23,66,67] and
send very fine projections to the excitatory synapses in
order to strengthen them [68]. Thus, our results suggest

a possible role for BDNF released from astrocytes in the
regulation of basal synaptic transmission and synaptic
fatigue in excitatory cortico-striatal synapses.
In the present study we wanted to administer BDNF

non-invasively using a genetic approach. However, other
non-invasively strategies have been reported to increase
BDNF in the HD brains such as drug administration
[61,69,70]. Thus, combination therapy with the pGFAP-
BDNF construct and administration of a drug such as
ampakines [69] could be crucial to fully recover the HD
phenotype.
Finally, it should also be noted that other neurodegen-

erative diseases are associated with reactive astrogliosis
and the consequent up-regulation of GFAP gene activ-
ity. Along these lines, pathologies such as Alzheimer’s
disease [71,72], Parkinson’s disease [73,74] and amyo-
trophic lateral sclerosis [75] show increased astrogliosis
reactivity with a consequent up-regulation of GFAP
levels. It would be highly relevant to test whether the
pGFAP-BDNF transgene might benefit these diseases.
This statement takes relevance since BDNF delivery in a
transgenic AD mouse model prevents loss of glutama-
tergic synapses and improves cognition [76]. In conclu-
sion, conditional BDNF delivery regulated by the GFAP
promoter in astrocytes could well be a therapeutic strat-
egy for treatment of HD and other neurodegenerative
diseases.

Methods
Animal handling and care
To obtain double-mutant animals (R6/2:pGFAP-BDNF
mice) we cross-mated male R6/2 mice [29] with female
pGFAP-BDNF mice [23]. Both R6/2 and pGFAP-BDNF
mice were obtained from distinct colonies bred in a
B6CBA background strain. Wild type (wt) littermate
animals were used as the control group. Mice were
housed together in numerical birth order in groups of
mixed genotypes with access to food and water ad libi-
tum in a colony room kept at constant temperature (19-
22°C) and humidity (40-50%) on a 12 h light/dark cycle.
All experiments used male mice, blind-coded for geno-
type. Data were recorded for analysis by microchip
mouse number. All animal-related procedures were in
accordance with the European Community guidelines
for the care and use of laboratory animals (89/609//
EEC) and were approved by the local animal care com-
mittee of the University of Barcelona (99/01) and Gen-
eralitat de Catalunya (99/1094).

Rotarod
Motor coordination and balance were evaluated on the
rotarod apparatus at distinct rotations per minute (rpm),
as described elsewhere [25]. In brief, animals at 5 weeks
of age were trained at constant speed (24 rpm) for 60
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sec. We performed two trials per day for three consecu-
tive days; and the latency to fall and the number of falls
during 60 sec was recorded. No differences between
groups were detected at this period. After training and
starting at 7 weeks of age, animals were evaluated once
a week at 16 and 24 rpm, and the number of falls in a
total of 60 sec was recorded. The animals were put on
the rotarod several times until the addition of the
latency to fall off reached a total of 60 sec. The curves
representing the behavioral pattern were compared and
the percentage of motor coordination function impair-
ment was calculated as described elsewhere [77].

Balance beam
The motor coordination and balance of mice were also
assessed by measuring their ability to traverse a narrow
beam [25]. The beam consisted of a long steel cylinder
(50 cm) with a 50 mm-square cross-section and a 15
mm-round diameter. The beam was placed horizontally,
50 cm above the bench surface, with each end mounted
on a narrow support. Animals were allowed to walk for
1 min along the beam, while their latency to fall, num-
ber of falls and distance covered were measured.

Footprint
The footprint test was performed as described elsewhere
[25]. Mice were trained to walk in a corridor that was
50 cm long and 7 cm wide. The forefeet and hindfeet of
the mice were painted with non-toxic red and blue ink,
respectively, and then given one run. The footprint pat-
tern was analyzed for the number of steps on the white
paper, the stride length was measured as the average
distance of forward movement between each stride, and
the forebase and hindbase widths were measured as the
perpendicular distance between the left and right foot-
prints of a given step.

Hanging wire
Neuromuscular abnormalities were analyzed by the hir-
ing wire test as described elsewhere [25,78] in 7-, 10-
and 12-week old wt, pGFAP-BDNF, R6/2 and R6/2:
pGFAP-BDNF mice. A standard wire cage lid was used.
To test balance and grip strength, mice were placed on
top of a wire cage lid. The lid was shaken slightly to
cause the mouse to grip the wires and then turned
upside down for 60 sec. The number of falls of each
mouse was recorded.

Clasping
Clasping was measured by suspending mice from their
tails at least 1 foot above a surface for 1 min. A clasping
event was defined by the retraction of either or both
hindlimbs into the body and toward the midline. Mice

were scored according to the following criteria: 0 = no
clasping, 1 = clasping 2 paws, and 2 = clasping all paws.

Plus Maze
To analyze mouse anxiety, we used the plus maze para-
digm. The apparatus used was similar to that described
elsewhere [30]. Briefly, the raised plus maze was made
of wood and consisted of two opposing 30 × 8 cm open
arms, and two opposing 30 × 8 cm arms enclosed by 15
cm-high walls. The maze was raised 50 cm from the
floor and lit by dim light. Each mouse was placed in the
central square of the raised plus maze, facing an open
arm and its behavior was scored for 5 min. At the end
of each trial, any defecation was removed and the appa-
ratus was wiped with 70% alcohol. We recorded the
time spent in the open arms, which normally correlates
with low levels of anxiety. Animals were tracked and
recorded with SMART junior software (Panlab, Spain).

Open Field
To check spontaneous locomotor activity we used the
open field [79]. Briefly, the apparatus consisted of a
white circular arena measuring 40 cm in diameter and
40 cm in height. Dimly light intensity was 40 lux
throughout the arena. Animals were placed on the arena
center and allowed to explore freely for 10 min. Sponta-
neous locomotor activity was measured. At the end of
each trial, any defecation was removed and the appara-
tus was wiped with 70% ethanol. Animals were tracked
and recorded with SMART junior software (Panlab,
Spain).

Immunohistochemistry
Animals were deeply anesthetized with pentobarbital (60
mg/kg) and intracardially perfused with a 4% parafor-
maldehyde solution in 0.1 M sodium phosphate, pH 7.2.
Brains were removed and post-fixed for 2 h in the same
solution, cryoprotected with 30% sucrose in phosphate
buffered saline (PBS) with 0.02% sodium azide and fro-
zen in dry-ice cooled isopentane. Serial coronal sections
(40 μm) obtained with a cryostat were processed for
free-floating immunohistochemistry.
The sections were washed three times in PBS, permea-

bilized and blocked for 15 min by shaking at room tem-
perature with PBS containing 0.3% Triton X-100 and 3%
normal goat serum (Pierce Biotechnology). After three
washes, brain slices were incubated overnight by shaking
at 4°C with the corresponding primary antibodies in PBS
with 0.02% sodium azide buffer. Antibodies used were
the anti-PSD-95 1:500 (Affinity BioReagents) and anti-
VGLUT1 1:500 (Synaptic systems). After primary anti-
body incubation, slices were washed three times and
then incubated for 2 h shaking at room temperature
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with subtype-specific fluorescent secondary antibodies:
Cy3 goat anti-rabbit and Cy2 goat anti-mouse (both
1:100; from Jackson ImmunoResearch). No signal was
detected in controls incubated in the absence of the pri-
mary antibody. Slight modifications were performed for
VGLUT1 immunohistochemistry [80].
For diaminobenzidine immunohistochemistry experi-

ments, endogenous peroxidases were blocked for 30-45
min in PBS containing 10% methanol and 3% H2O2.
Then, non-specific protein interactions were blocked
with normal serum or bovine serum albumin. Tissue
was incubated overnight at 4°C with the following pri-
mary antibodies: anti-GFAP (1:500; Dako A/S), anti-cal-
bindin (1:10000; Sigma Chemical Co.) and anti-EM48
(1:500; Chemicon). Sections were washed three times in
PBS and incubated with a biotinylated secondary anti-
body (1:200; Pierce) at room temperature for 2 h. The
immunohistochemical reaction was developed using the
ABC kit (Pierce) and made visible with diaminobenzi-
dine. No signal was detected in controls in which the
primary antibodies had been omitted.

Stereology
Striatal volume estimations were performed as described
elsewhere [25]. Unbiased blinded to genotype counting
for genotype and condition was performed with Compu-
ter-Assisted Stereology Toolbox (CAST) software
(Olympus Danmark A/S). For estimating mean cellular/
perikaryal volumes of neurons (so-called local volumes)
with design-based stereology, the “nucleator” method
was used, as described elsewhere [81]. To determine
neuronal and NIIs sub-population densities (neurons or
NIIs per mm3) in the striatum, we used the dissector
counting procedure in coronal sections spaced 240 μm
apart, as described elsewhere [82].

Confocal analysis and dendritic spine-like structures
counting
Fluorescently stained coronal sections were examined
blinded to genotype by confocal microscopy, using a
Leica TCS SL laser scanning confocal spectral micro-
scope with argon and helium-neon lasers. Images were
taken with a 63× numerical aperture lens with 4× digital
zoom and standard (one Airy disc) pinhole. For each
mouse, at least 4 slices of 40 μm containing striatal tis-
sue were analyzed. Between 4 and 6 representative
images, from dorsomedial striatum, were obtained from
each slice. For each image, the entire three-dimensional
stack of images was obtained by the use of the Z drive
present in the Leica TCS SL microscope, and the size of
the optical image was 0.5 μm, with a separation of 4 μm
between each one. The number of dendritic spine-like
structures was counted by the freeware NIH ImageJ ver-
sion 1.33 by Wayne Rasband (National Institutes of

Health, Bethesda, MD), similar to described elsewhere
[15].

Western blotting
Mice (12 weeks old; n: 7-14 per genotype) were deeply
anesthetized in a CO2 chamber. The brain was quickly
removed and the striatum was dissected, frozen in dry
ice and stored at -80°C until use. Briefly, striatal tissue
was sonicated in 250 Ml lysis buffer (PBS, 1% Nonidet
P40, 0.1% SDS, 0.5% sodium deoxycholate, 1 mM
PMSF, 10 mg/ml aprotinin, 1 mg/ml leupeptin, 2 mg/ml
sodium orthovanadate) and centrifuged at 12,000 rpm
for 20 min. Striatal proteins (15 μg) were analyzed by
7.5% SDS-polyacrylamide gel electrophoresis and trans-
ferred to Immobilon-P membranes (Millipore). Gel blots
were blocked in TBS-T (150 mM NaCl, 20 mM Tris-
HCl (pH 7.5), 0.05% Tween 20) with 5% non-fat dry
milk and 5% bovine serum albumin. Immunoblots were
probed with anti-DARPP-32 (1:1000; BD Biosciences),
anti-GFAP (1:1000; Dako A/S), anti-BDNF (1:1000;
Santa Cruz Biotechnology) and an affinity-purified rabbit
anti-enkephalin applicable for Western blotting [35]. All
blots were incubated with the primary antibody over-
night at 4°C in PBS 0.02% sodium azide buffer with
shaking. After several washes in TBS-T, blots were incu-
bated with IgG HRP-conjugated anti-mouse or anti-rab-
bit antibodies (Promega Biotechnology) and developed
using the ECL Western blotting analysis system (Santa
Cruz). Incubation with a monoclonal anti-b-tubulin
antibody (1:50,000; Sigma Chemical Co.) was used as a
loading control.

Electrophysiology
Transverse brain slices (450 μm thickness) were pre-
pared from mice, using conventional methods [83], and
incubated for more than 1 h at room temperature (21-
24°C) in artificial cerebrospinal fluid (aCSF). The aCSF
contained (in mM) 124 NaCl, 2.69 KCl, 1.25 KH2PO4, 2
MgSO4, 26 NaHCO3, 2 CaCl2 and 10 glucose, and was
gassed with 95% O2 and 5% CO2. Brain slices containing
both striatum and cortex were transferred to an immer-
sion recording chamber and superfused (2.5 ml/min)
with gassed aCSF warmed to 32-34°C. After 1 h of equi-
libration, extracellular field potentials were recorded in
the dorsomedial striatum by a glass microelectrode filled
with 1 M NaCl solution on stimulation of the white
matter between the cortex and the striatum with a bipo-
lar tungsten electrode via a 2100 isolated pulse stimula-
tor (A-M Systems, Inc.). Long-term potentiation (LTP)
was induced by applying four 1 s, 100 Hz trains deliv-
ered every 10 s, and potentiation was measured for 1 h
after LTP induction at 0.1 Hz. For each experiment,
population spike (PS) amplitude was expressed as a per-
centage of average pre-tetanus baseline amplitude
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values. Synaptic fatigue was induced by a train at 100
Hz. Data were filtered (highpass, 0.1 Hz; lowpass 3 kHz)
and digitized using a PowerLab 4/26 acquisition system
(AD Instruments). The software Scope (AD Instru-
ments) was used to display PS and measurements of the
amplitude of PS.

Statistical analysis
All data are expressed as mean ± s.e.m. Different statis-
tical analyses were performed as appropriate and are
indicated in the figure legends. Values of p < 0.05 were
considered statistically significant.
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