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by treatment
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Abstract

Several studies have linked circulating cell-free mitochondrial DNA (ccf-mtDNA) to human disease. In particular,
reduced ccf-mtDNA levels in the cerebrospinal fluid (CSF) of both Alzheimer’s and Parkinson’s disease (PD) patients
have raised the hypothesis that ccf-mtDNA could be used as a biomarker for neurodegenerative disease onset and
progression. However, how a reduction of CSF ccf-mtDNA levels relates to neurodegeneration remains unclear. Many
factors are likely to influence ccf-mtDNA levels, such as concomitant therapeutic treatment and comorbidities. In this
study we aimed to investigate these factors, quantifying CSF ccf-mtDNA from the Parkinson’s Progression Markers
Initiative in 372 PD patients and 159 matched controls at two time points. We found that ccf-mtDNA levels appear
significantly reduced in PD cases when compared to matched controls and are associated with cognitive impairment.
However, our data indicate that this reduction in ccf-mtDNA is also associated with the commencement, type and
duration of treatment. Additionally, we found that ccf-mtDNA levels are associated with comorbidities such as
depression and insomnia, however this was only significant if measured in the absence of treatment. We conclude that
in PD, similar to reports in HIV and sepsis, comorbidities and treatment can both influence ccf-mtDNA homeostasis,
raising the possibility that ccf-mtDNA may be useful as a biomarker for treatment response or the development of
secondary phenotypes. Given that, clinically, PD manifests often decades after neurodegeneration begins, predicting
who will develop disease is important. Also, identifying patients who will respond to existing treatments or develop
secondary phenotypes will have increased clinical importance as PD incidence rises.
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Main text
The identification of circulating cell-free mitochondrial
DNA (ccf-mtDNA) in 2000 [1], prompted a wave of stud-
ies assessing the utility of ccf-mtDNA as a biomarker of
disease [2–7], detection of cancers [8–12] and susceptibil-
ity to comorbidities during HIV infection [13, 14].
Ccf-mtDNA is thought to be released as a by-product of

cell death [15, 16] or, in response to increased oxidative or
metabolic stress as a damage-associated molecular pattern
[17]. Thus, it might be expected that ccf-mtDNA would be
elevated in disease. However, the opposite appears true in
neurodegenerative disease, with studies showing reduced
cerebrospinal fluid (CSF) ccf-mtDNA in Alzheimer’s (AD)

[18] and Parkinson’s disease (PD) [19] patients; which
decreases further during disease course. This suggests that
reduced ccf-mtDNA could be a biomarker of both disease
onset and progression; however, what this reduction re-
flects biologically and how it relates to neurodegeneration
remains unclear.
Many factors likely influence ccf-mtDNA levels. Disease

is clearly a factor2–713,14, raising the possibility that comor-
bidities may modulate PD ccf-mtDNA levels. Serum ccf-
mtDNA levels are influenced by inflammation [20], BMI
[21] and psychosocial and physical stress [22]; factors pre-
viously linked to PD progression [23, 24]. Elevated plasma
ccf-mtDNA levels are associated with nonresponsiveness
to selective serotonin reuptake inhibitor (SSRI) treatment
in major depressive disorder (MDD) [4] and vitamin C in-
fusion has been shown to reduce plasma ccf-mtDNA levels
in sepsis patients [25], suggesting that treatment may be an
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important cofactor in any ccf-mtDNA assessment. In CSF,
ccf-mtDNA likely originates from the ependymal cells of
the choroid plexus, an area not subject to neurodegenera-
tion in either AD or PD, but which recruits leukocytes to
the brain under inflammatory conditions [26]. CSF ccf-
mtDNA was reduced in multiple sclerosis (MS) patients
who were treated with fingolimod [27], a drug which in-
hibits lymphocyte release from lymph nodes and reduces
autoreactive inflammation in the central nervous system.
Fingolimod also suppresses neuronal mitochondrial medi-
ated autophagy [28], suggesting that disease modulatory
treatments may influence CSF ccf-mtDNA levels by sup-
pressing mtDNA release during cellular stress.
In PD, L-dopa reportedly exacerbates neuroinflamma-

tion [29] and inflammation is associated with ccf-
mtDNA release [30]. Therefore, it is possible that L-
dopa treatment could increase ccf-mtDNA levels in re-
sponders, but have no effect in those that have become
L-dopa resistant. In addition, L-dopa may affect the
mtDNA pool available for release, as L-dopa can induce
oxidative stress [31], affecting mitochondrial vitality and
increasing cellular mtDNA copy-number in brains [32].
However, despite evidence suggesting that variable ccf-

mtDNA levels could be a manifestation of treatment [25],
this has not been formally tested in PD. Thus, in this study
we assessed CSF ccf-mtDNA levels in a well-characterised
cohort of PD subjects and controls to test the relationship
between treatment and changes in ccf-mtDNA.
PD and control CSF samples, biopsied at 0 and 36

months, were obtained from the Parkinson’s Progression
Markers Initiative (PPMI). Ccf-mtDNA was quantified by
qPCR [19, 33]. Statistical analysis of log [10] transformed
ccf-mtDNA levels were performed using Student’s t-test,
ANOVA and ANCOVA, with effect sizes estimated using
Cohen’s d. Detailed protocols are available in the Methods
Section.
PPMI-PD patients and controls were well-matched

(Additional File 1: Table 1). As expected, PPMI-PD pa-
tients had significantly higher clinical severity ratings
when compared to controls at both 0 and 36months. At
0 months no PPMI-PD case was receiving PD-related
medication. By 36months 90% had begun treatment;
with 25% receiving L-dopa only, 6% receiving dopamine
agonists only, 6% receiving monoamine oxidase inhibi-
tors only and 63% receiving a combination of at least
two of these treatments (Additional File 1: Table 1).
At recruitment (0 months) ccf-mtDNA levels were not

significantly different between PPMI-PD cases and con-
trols, however after 36 months ccf-mtDNA levels ap-
peared significantly reduced in PPMI-PD cases, although
with a modest effect size (Fig. 1a). Limiting to samples
with both 0 and 36month measurements confirms that
this reduction is limited to PD cases (Fig. 1b; individual
changes in ccf-mtDNA copy number between 0 and 36

months are presented in Additional File 1: Fig. 1); in line
with our previous report [19]. Within PPMI-PD subjects,
we found no significant correlations between disease se-
verity ratings or motor-related phenotypes and ccf-
mtDNA levels at 0 or 36months (Additional File 1: Table
2). Elevated ccf-mtDNA was associated with cognitive im-
pairment (defined by MoCA < 26 and psychometric test-
ing defined by the PPMI) at 0months (Fig. 1c); however,
this trend was reversed at 36months. Previous studies
have used the Unified Parkinson’s Disease Rating Scale
(UPDRS) to measure the response of motor and non-
motor symptoms to treatment [34]. However, comparing
change in 36month ccf-mtDNA levels to changes in
UPDRS parts I-III and UPDRS-total score (calculated as
36months minus the month at which PD treatment
began) failed to identify a significant association (data not
shown). Although, as PPMI-PD UPDRS scores have been
shown to significantly increase over time [35], this may be
a reflection of the reduced sample number with a viable
CSF ccf-mtDNA measurement (i.e. 48% of the samples
used in [35]) and variability in treatment durations (aver-
age treatment duration prior to 36month sampling in 158
treated PD cases was 26.8 ± 5.9 months); suggesting that
further, longitudinal, studies are required.
Next we investigated the effect of treatment on ccf-

mtDNA levels. PPMI-PD patients began treatment in the
intervening period between baseline and 36month, (Add-
itional File 1: Table 1), thus we limited our analysis to 36
month data. Although the number of PPMI-PD patients
who remained treatment naïve was comparatively small,
we observed a significant inverse correlation between treat-
ment and ccf-mtDNA levels (Fig. 2a). This effect was repli-
cated by a reanalysis of our previously published ICICLE-
PD data [19], which also showed significantly reduced ccf-
mtDNA levels in treated patients (Fig. 2b & Additional File
1: Table 3). To further support this finding, we compared
ccf-mtDNA levels to levodopa equivalent daily dose
(LEDD) [36], which showed significant inverse correlations
in both PPMI-PD and ICICLE-PD separately (Fig. 2c-d),
and when analysed together (p = 0.0096, Additional File 1:
Figure 2). Taken together, these data suggest that thera-
peutic intervention is modulating ccf-mtDNA levels.
Sub-stratification of PPMI-PD data by treatment type

indicates that L-dopa is significantly inversely associated
with ccf-mtDNA levels (Fig. 2e). Although combination
therapies (of which L-dopa is a component) showed the
same trend, this did not reach statistical significance in
PPMI-PD. The effect of L-dopa was replicated in the
ICICLE-PD data, with combination therapy also reach-
ing statistical significance (Dunnett’s p < 0.05, Additional
File 1: Figure 3), although it should be noted that the
group sizes are comparatively smaller.
We then compared treatment duration to ccf-mtDNA

levels by ANCOVA, which showed a significant association
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when analysed with treatment type as a covariate (p =
0.018, Fig. 2f). Patients on treatment for < 18months had
significantly reduced ccf-mtDNA levels compared to subse-
quent timepoints (Tukey’s p < 0.05, Fig. 2f), with ccf-
mtDNA levels rising as treatment duration increased, sug-
gesting that treatment has an immediate effect that dimin-
ishes over time. This effect was not treatment type specific,
with each of the four treatments showing reduced ccf-
mtDNA at 18months, subsequently rising with duration
(Additional File 1:Figure 4). Those ICICLE-PD patients on
treatment, were on treatment at both 0 and 18months and
were thus not used to assess treatment time.
Several phenotypes are associated with ccf-mtDNA [2–

7, 9–14, 37] and PD is associated with a number of co-
morbidities [38]. Thus, we stratified ccf-mtDNA levels by
PD-related comorbidities including: anxiety/depression
(anxiety and depression were 99.9% concordant in PD pa-
tients) [39], gastroesophageal reflux disease [40], constipa-
tion [41], insomnia [42], diabetes [43] and sleep apnoea
[44] (Additional File 1: Table 4). At 0months, we observed
significantly elevated ccf-mtDNA levels in PD patients
exhibiting anxiety/depression (p = 0.013, Fig. 3a) and PD
patients exhibiting insomnia (p = 0.009, Fig. 3b). However,
by 36months (and, notably, after the initiation of PD
treatment) the trend is reversed for anxiety/depression
(Figs. 3a, Additional File 1: Table 4), but not for insomnia
(although the sample size is smaller); further suggesting

that therapeutic intervention is the principle driver of
changes in ccf-mtDNA reduction.
Our results show that ccf-mtDNA levels are reduced in

PD patients compared to controls and, similar to other
studies [4, 13, 14], can be indicative of comorbidities. How-
ever, this reduction is also influenced by the commence-
ment, type and duration of therapeutic intervention.
Elevated ccf-mtDNA was observed in MDD patients

who were unresponsive to SSRI treatment [4] and reduced
ccf-mtDNA is associated with vitamin C infusion in sepsis
patients [25], suggesting that ccf-mtDNA levels may be an
indicator of treatment response. With regard to PD medi-
cation, L-dopa crosses the blood-brain barrier and has
been shown to affect mitochondrial function [45, 46], in-
creasing neuronal mtDNA copy-number [47]. Thus, if we
assume that ccf-mtDNA release is the norm (based on ob-
servations that the levels in controls are often higher than
patients) [19, 48], it is possible that the initial decrease in
ccf-mtDNA we observe in patients taking L-dopa (and L-
dopa in combination treatments) may actually be a conse-
quence of the drive to increase cellular mtDNA content
by restricting the fraction of mtDNA that is released. As
L-dopa becomes less effective as PD progresses [49], the
subsequent increase in ccf-mtDNA we observe over time
is potentially a result of selection of the surviving neurons
or a result of a proportion of patients becoming unrespon-
sive to continued treatment.

Fig. 1 Comparative ccf-mtDNA levels in PPMI-PD cases and controls. a CSF ccf-mtDNA levels are reduced in PPMI-PD patients compared to controls
at 36months (mean ccf-mtDNA in 176 PD patients 2.0 (95%CI = 1.99–2.16), versus 2.2 (95%CI = 2.11–2.32) in 87 controls, Student’s t-test p = 0.045,
Cohen’s d = 0.35), but not at 0months (mean ccf-mtDNA in 291 PD patients 2.1 (95%CI = 2.10–2.22), versus 2.2 (95%CI = 2.16–2.34) in 132 controls,
Student’s t-test p = 0.101). After regression, adjusting for age, sex and BMI as covariates, group differences remained significant at 36months (p = 0.047)
and non-significant at 0 months (p = 0.233). b The reduction in CSF ccf-mtDNA between 0 to 36months appears specific to PPMI-PD cases (Change in
mean CSF ccf-mtDNA levels calculated from 0 to 36months where both timepoints were available, mean change in 130 PD patients − 0.15 (95%CI =
0.274--0.026), Student’s t-test p = 0.045; in 58 controls − 0.02 (95%CI = -0.224–0.184), Student’s t-test p = 0.858). c Elevated CSF ccf-mtDNA levels are
associated with cognitive impairment in PPMI-PD patients at 0months (mean ccf-mtDNA in 230 PD cases without cognitive impairment 2.1 (95%CI =
2.05–2.19), versus 2.3 (95%CI = 2.19–2.45) in 61 PD cases with cognitive impairment, Student’s t-test p = 0.012, Cohen’s d = 0.38), but not at 36months
(mean ccf-mtDNA in 138 PD cases without cognitive impairment 2.1 (95%CI = 2.03–2.21), versus 1.9 (95%CI = 1.79–2.11) in 38 PD cases with cognitive
impairment, Student’s t-test p = 0.44). Error bars indicate mean and 95% confidence interval (95%CI)
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Fig. 2 (See legend on next page.)

Lowes et al. Molecular Neurodegeneration           (2020) 15:10 Page 4 of 8



Both PD, L-dopa and ccf-mtDNA are linked to inflam-
mation [20, 50], however, we were unable to directly meas-
ure this in our cohort. This is an important area of future
study, as we are unaware of previous reports which have
compared CSF ccf-mtDNA levels to inflammation in PD.
Further, ccf-mtDNA was measured in CSF which, although
often used for studying markers of neurodegeneration [51],
cannot be wholly indicative of localised differences in cell
death or mitochondrial dysfunction. Thus, in the future it

may be advisable to correlate CSF ccf-mtDNA levels to
specific brain pathology and brain mtDNA levels, to poten-
tially elucidate the biological mechanisms underlying ccf-
mtDNA release.
Finally, our data suggest that ccf-mtDNA levels may

be associated with the onset of comorbidities such as
cognitive impairment, anxiety/depression, and insomnia,
but only if measured in the absence of treatment; sug-
gesting that the effect of treatment on reducing ccf-

(See figure on previous page.)
Fig. 2 Ccf-mtDNA levels associate with PD treatment. a CSF ccf-mtDNA levels in treated PD patients are significantly lower than untreated patients
(mean ccf-mtDNA in 160 treated PPMI-PD patients 2.1 (95%CI = 1.97–2.14) versus 2.4 (95%CI = 2.12–2.60) in 16 untreated PPMI-PD patients, Student’s t-
test p = 0.029, Cohens d = 0.62). b A reanalysis of our previously published data [19], with ICICLE-PD patients now grouped as treated/untreated further
supports our findings that treatment affects ccf-mtDNA levels at 0months (mean ccf-mtDNA in 39 treated ICICLE-PD patients 1.9 (95%CI = 1.77–2.01),
versus 2.5 (95%CI = 1.88–3.13) in 3 untreated ICICLE-PD patients, Student’s t-test p = 0.009, Cohens d = 1.9). At 18months, ccf-mtDNA levels appeared
similar between untreated/treated PD patients (n = 4/48, p = 0.36). However, 3 out of the 4 18-month untreated cases were receiving treatment at 0
months (indicated by the arrows), suggesting that the effect of treatment on reducing ccf-mtDNA had already occurred, although this is based on a
small subset and should be interpreted with caution. c-d CSF ccf-mtDNA levels are significantly inversely correlated to levodopa effective daily dose
(LEDD) in c) PPMI-PD (n = 157, 36month samples, p = 0.011, r2 = 0.05) and d ICICLE-PD (n = 48, 18month samples, p = 0.035, r2 = 0.1) patients. Dotted
lines indicate 95% CI. e Specific treatment type is significantly associated to CSF ccf-mtDNA levels (ANOVA p = 0.048), with levodopa/carbidopa treated
PPMI-PD patients showing significantly reduced ccf-mtDNA levels compared to untreated patients (mean ccf-mtDNA 2.0 (95%CI = 1.77–2.16) in 40
levodopa/carbidopa treated PD versus 2.4 (95%CI = 2.12–2.60) in 16 untreated PD, Dunnett’s p < 0.05, Cohens d = 0.76). CSF ccf-mtDNA levels appear
lower in patients treated with combination therapies, although this did not reach statistical significance (Dunnett’s p > 0.05). Where L-dopa =
levodopa/carbidopa, DA = dopamine agonist, MAOI =monoamine oxidase inhibitor and Comb = combination of > 2 treatments. f) CSF ccf-mtDNA
levels are associated to treatment duration (18 to > 31months ANCOVA p = 0.018, with treatment type as a covariate), with PPMI-PD patients treated
for < 18months showing a significant reduction in CSF ccf-mtDNA levels when compared to each subsequent time point (Tukey’s corrected P < 0.05
for each time point). Error bars indicate 95% confidence interval (95%CI)

Fig. 3 Prior to treatment, ccf-mtDNA levels are associated with PD-related comorbidities. a CSF ccf-mtDNA levels are associated with anxiety/
depression in PD patients at 0 months (mean ccf-mtDNA in 232 PD cases without anxiety/depression 2.1 (95%CI = 2.05–2.19), versus 2.3 (95%CI =
2.19–2.44) in 59 PD cases with anxiety/depression, Student’s t-test p = 0.013, Cohen’s d = 0.37), but not at 36 months (mean ccf-mtDNA in 136 PD
cases without anxiety/depression 2.12 (95%CI = 2.03–2.21), versus 1.94 (95%CI = 1.78–2.14) in 40 PD cases with anxiety/depression, Student’s t-test
p = 0.092). b CSF ccf-mtDNA levels are associated with insomnia in PD patients at 0 months (mean ccf-mtDNA in 277 PD cases without insomnia
2.1 (95%CI = 2.08–2.20), versus 2.5 (95%CI = 2.25–2.79) in 14 PD cases with insomnia, Student’s t-test p = 0.009, Cohen’s d = 0.76), but not at 36
months (mean ccf-mtDNA in 165 PD cases without insomnia 2.1 (95%CI = 2.00–2.79), versus 2.2 (95%CI = 1.82–2.57) in 11 PD cases with insomnia,
Student’s t-test p = 0.486). Error bars indicate 95% confidence interval (95%CI)
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mtDNA is greater than the effect of comorbidities to
raise it. It is possible that there is an interplay between
ccf-mtDNA, PD medication and the response to add-
itional medications given to treat each comorbidity,
however, we were unable to assess in this study. Thus,
independent replication of these observations is war-
ranted and future ccf-mtDNA studies should consider
these factors as potential confounding variables.
In conclusion, our results indicate that ccf-mtDNA

levels can be influenced by treatment commencement,
type and duration; which limits the utility of ccf-mtDNA
as a biomarker of disease onset. In addition, our obser-
vations that LEDD dose correlates to ccf-mtDNA level is
worthy of further mechanistic investigation. Our data
also indicate that, considering inconsistencies in re-
ported disease associations to ccf-mtDNA, studies of
ccf-mtDNA where treatment parameters and comorbid-
ity have been omitted or were unavailable should be
interpreted with caution.

Methods section
Protocol approvals, registrations, and consents
Written informed consent for research was obtained from
all individuals participating in the PPMI and approved by
an ethical standards committee (PPMI-info.org).

PPMI CSF sample cohort
We used 541 PPMI lumbar CSF biopsies, sampled at 0
months (372 PD patients and 169 matched-controls), and
364 PPMI lumbar CSF biopsies, sampled at 36months
(250 PPMI-PD cases and 114 matched-controls). Sample
drop-out between 0months and 36months was 33% (33%
cases and 33% controls). For all samples, CSF was col-
lected and stored under PPMI guidance (fully described at
https://www.ppmi-info.org/). Demographic data is sum-
marised in Additional File 1: Table 1.

PPMI cohort characteristics
At 0months, all PPMI-PD patients had a clinical diagnosis
of PD for < 2 years and were not taking PD medication (al-
though a large proportion, 90.3%, of patients had begun
treatment at 36months, Additional File 1: Table 1.: with
25.2% of PD patients receiving levodopa(+carbidopa) only,
6.22% receiving dopamine agonists only, 5.6% receiving
monoamine oxidase inhibitors only and 62.9% receiving a
combination of at least two of these treatments). All control
participants were > 30 years of age, did not have PD or pro-
dromal signs of PD and did not have a first degree blood
relative with PD (fully described at https://www.ppmi-info.
org/). Demographic and phenotypic data at 0months and
36months were made available from the PPMI (fully de-
scribed at https://www.ppmi-info.org/). Phenotypic data is
summarised in Additional File 1: Table 1.

Ccf-mtDNA quantification
ccf-mtDNA was quantified using established methods
[19, 33]. ccf-mtDNA copy number was calculated as an
absolute measurement of MTND1 (minor deletion arc
mitochondrial gene) and derived from a triplicated
standard curve and is expressed as copies per 1 μl of
CSF. As in previous work [19, 33], samples with > 1
B2M copies per microliter (indicating nuclear DNA con-
tamination) were removed from further analysis (0
months: PD patients = 81, 28% and controls = 37, 28%,
and 36months: PD patients =74, 30% and controls = 27,
23%), leaving a final cohort of 423 samples at 0 months
(291 PD patients and 132 controls) and 263 samples at
36 months (176 PD patients and 87 controls).

Statistical analysis
Data were analysed using R (v3.4.3) [52] and Prism v5.
Normality of ccf-mtDNA distributions were assessed by
Shapiro-Wilks and could not be rejected at the 0.05
level. Thus, all ccf-mtDNA levels are expressed as log
[10] copy-number per microliter.
Correlations were performed using Pearson’s r, control

vs PD comparisons were performed using Student’s t-
tests, while comparisons of treatment type and duration
were performed using ANOVA (with Dunnett’s post-hoc
tests, using the first category as a reference, i.e. untreated
in Fig. 2e) or by ANCOVA with treatment type as a co-
variate (with Tukey’s post-hoc tests, i.e. in Fig. 2f). All
tests were two-tailed with α =0.05. Multiple significance
correction can be too conservative for a discovery study,
particularly when testing a priori hypotheses with vari-
ables that are not all independent [53]. Thus, unless spe-
cified in the text, we report unadjusted P values as for
reasons well documented in the literature [53].

ICICLE-PD reanalysis
In previous work [19], we observed a significant reduction
in ccf-mtDNA levels at both 0 and 18months. As the vast
majority (> 95%) were on treatment at study commence-
ment, we did not originally consider the effect of treat-
ment. In this subsequent reanalysis we have revisited our
original data, taking treatment commencement and type
into account (Additional File 1: Table 3). Ccf-mtDNA data
and treatment were reanalysed as per PPMI-PD.

Statistical power
Based on prior association [19], where mean log [10]
ccf-mtDNA per microliter was 1.8 (SD = 0.48) in 54 PD
compared to 2.4 (SD = 0.32) in 10 controls, and assum-
ing an α of 5%, we have > 95% power to detect a signifi-
cant difference in mean ccf-mtDNA copy number
between PD patients and controls using Student’s t-test
at baseline assuming > 50 cases versus > 50 controls (cal-
culated using pwr v1.2–2 in R).
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