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Abstract

One of the primary genetic risk factors for Alzheimer’s disease (AD) is the presence of the 4 allele of
apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also
involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism.
Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele
being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces
the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has
been devoted towards developing cellular and animal models. Data from these models indicate that APOE4
exacerbates amyloid (3 plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an
isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are
distinct from modulation of AB or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic

pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available
studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought
therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions.
This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4
towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.
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Background
Apolipoprotein E4 is the major genetic risk factor in
Alzheimer’s disease
Alzheimer’s disease (AD), neuropathologically character-
ized by extracellular amyloid B (AP) deposition and
intracellular neurofibrillary tangles (NFT) of tau protein,
is the most prevalent neurodegenerative dementia affect-
ing millions of people worldwide [1]. One of the primary
genetic risk factors for sporadic AD, also referred to as
late onset AD (LOAD), is the presence of the E4 isoform
of apolipoprotein E (APOE) protein [2].

Humans have three major APOE alleles (E2, E3, and
E4) [3]. APOE3 is the reference allele present in the
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majority of the population; the APOE4 allele increases
the risk of AD in a dose- and age-dependent manner
whereas the APOE?2 allele is associated with reduced risk
of AD [4-6]. Though there are variations based on sex
and ethnicity, it is estimated that APOE2 homozygotes
have a 40% reduced risk of developing AD [7]. Presence
of APOE2 delays the age of onset in the Paisa kindred of
familial AD cases [8], reinforcing the idea that APOE2
isoforms are protective against familial AD. In humans,
the APOE?2 allele while being protective against AD, is
associated with elevated plasma levels of cholesterol and
triglycerides and a condition called dysbetalipoproteine-
mia that is associated with coronary artery disease [9].
On the other hand, APOE4 is associated with increased
risk of atherosclerosis and increasing risk of AD by as
much as 8-12x in homozygotic humans. There is a gen-
eral consensus in the literature that AD patients with
the APOE4 isoform have accelerated onset of dementia,
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worse memory performance and higher AB burden than
APOE4 non-carriers [10], though the isoform-dependent
effects on tauopathy remain unclear [11, 12]. APOE4
can also exacerbate functional abnormalities such as
neuronal network connectivity independent of gross
structural changes or AD type proteinopathy [13]. These
topics have been covered previously in excellent reviews
and therefore not discussed further [10, 14, 15]. These
data suggest that it may be necessary to both restore
some critical APOE function in E4 carriers while also
inhibiting the activity of APOE4 in promoting AD-
related AP proteinopathy [14].

Peripheral and CNS pools of APOE are independent
APOE is a 299 amino acid protein, with an apparent
molecular mass of ~36kDa whose primary function is
that of a cholesterol transporter [14]. The three isoforms
differ by one amino acid each at positions 112 and 158
that has profound effects on their functions. Both
APOE2 (Cys112, Cys158) and APOE3 (Cys112, Argl58)
preferentially interact with small, phospholipid-enriched
high-density lipoproteins (HDL), while APOE4 (Argl12,
Argl58) has higher propensity to be associated with lar-
ger, triglyceride-enriched lipoproteins or VLDL [16]. A
further distinction is that among all the isoforms,
APOE2 has the lowest binding affinity for low-density
lipoprotein (LDL) receptors [17]. Mice have a single allele
of Apoe that differs at multiple positions from human
APOE, but encodes Arg at the positions cognate to 112
and 158 of human APOE. Most of what is known about
APOE has been derived from studies in mice and human
cell culture models. Studies in mice have examined both
endogenous mouse Apoe and expressed human APOE.
For the purposes of this review, we will use the human
and mouse nomenclature interchangeably as appropriate
for the model systems used, defaulting to APOE when dis-
cussing general features of APOE biology.

In the CNS, APOE is primarily synthesized by astro-
cytes and in certain circumstances, it is also produced by
microglia and neurons [18-21]. APOE has myriad func-
tions in the CNS that include immunomodulation, signal
transduction, proteostasis regulation and synaptic plasti-
city [14, 22]. The peripheral pool of plasma APOE is
produced mainly in the liver, and to a lesser extent by
the adrenal gland and macrophages. In the periphery, in
addition to regulating lipid metabolism, APOE has a key
role in controlling cardiovascular function and systemic
inflammation [23]. This pool of APOE exists mostly in-
dependent of the CNS pool under normal circumstances
[24, 25]. An important difference between the CNS and
peripheral APOE pools is that only peripheral APOE4
shows faster turnover rate compared to APOE3 and
APOE2 in humans and humanized mice [22, 23]. Astro-
cytic and plasma APOE lipoprotein particles are also
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structurally different and the former is thought to lack
the cholesteryl ester core [26]. Therefore, it is possible
that the structure-function relationship of peripheral
and CNS pools of APOE to the development of AD and
non-AD pathologies might be distinct, suggesting that
these two pools of APOE can potentially act independ-
ently as risk factors in regulating pathogenesis during
normal aging or in neurodegenerative dementias.

Because of the pleiotropic functions of APOE isoforms
in the CNS and periphery, mechanistically dissecting the
role of APOE in the context of AD and related disorders
is fraught with complications. This uncertainty over po-
tential mechanism of action creates a conundrum in that
the E4 allele may cause disease by both a loss of function
or gain of function, depending on the cellular context
[14]. A recent report had serendipitously identified a
mouse model with intact peripheral Apoe levels and
thus normal plasma lipid profile but with extremely low
levels of brain Apoe. These mice have impaired synaptic
plasticity but their spatial memory skills are intact [24],
suggesting that peripheral and CNS APOE may have dis-
tinct effects on CNS function. On the other hand, ab-
sence of hepatic APOE does not affect the APOE4-
dependent induction of AP pathologies in young APP/
PS1 female mice, suggesting that plasma APOE4 may
have little influence on initiation of AP pathologies in
the brain [27]. With this knowledge, it is reasonable to
explore treatment options that would preferentially
modify the CNS pool of APOE without affecting the per-
ipheral sources, thus also avoiding systemic metabolic
syndromes.

Rodent models as exemplars of human APOE function
The Apoe deficient mice, Apoe hypomorphic mice and
APOE knock-in mice have been key resources in the
field of atherosclerosis biology, cardiovascular disease
and peripheral inflammation [28]. For the most part, the
data are concordant between mouse studies and humans
[29]. However, there are some critical differences be-
tween mouse and human lipoprotein biology that can
impact the interpretation of APOE-related studies in
mice. In mice, circulating cholesterol is predominantly
associated with HDL whereas it is bound to LDL in
humans [30]. In addition, mice lack the cholesteryl ester
transfer protein (CETP) gene which transfers cholesteryl
esters and triglycerides between lipoproteins [31].
Perhaps the most commonly used models to study hu-
man APOE function in the CNS are the human APOE
targeted replacement (TR) mice from Nobuyo Maeda’s
lab [32-34]. The APOE4 TR mice, in which the en-
dogenous Apoe gene has been replaced with human
APOE4, display various phenotypes including altered
cholesterol trafficking in the brain, blood brain barrier
(BBB) leakiness and cognitive deficits [35—-39]. However,
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simply replacing the endogenous mouse Apoe gene with
the human APOE4 gene does not produce the primary
neuropathologies (AP and NFT) found in AD patients.
Overall, the lack of spontaneously occurring AD-type
pathology in APOE4 TR mice has limited its use as a
stand-alone model of AD.

Concurrence of experimental data across different
systems

A large number of studies have used rodent models
(such as APOE TR), in vitro models including human in-
duced pluripotent stem (iPS) cells and primary rodent
cultures as well as data from human biosamples to delin-
eate apoE-related pathologies. Most of the studies show
isotype-specific and directionality-specific concordance
between these experimental paradigms (Fig. 1). For ex-
ample, the isoform-dependent effects of APOE on Ap
clearance and Af} aggregation are in complete agreement
in these different systems [42—53]. As in humans, pres-
ence of APOE4 increases AP deposition burden in APP
transgenic mice relative to age-matched APOE2 TR
mice. This has also been demonstrated in human iPSC-
derived glial cultures, where APOE4 impairs glial Af
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uptake and phagocytosis compared to APOE3 [48]. On
the other hand, there is a current lack of consensus re-
garding the relationship between tauopathy and APOE
isoform as demonstrated by studies showing a patho-
genic interaction of tau to APOE4 [11, 54] or APOE2
[12]. Further, human iPSC derived neurons [55] as well
as organoids [49] that express APOE4 accumulate higher
levels of phosphorylated tau when compared to neurons
expressing APOE3. Importantly, data from humans
present no clear association between APOE4 genotype
and severity of NFT pathology [56, 57]. Different APOE
isoforms have differential pathogenic effect on various
metabolic pathways such as cardiovascular function,
lipid transport, insulin signaling and glucose metabolism
across these model systems [36, 37, 58—67]. There is a
clear consensus regarding APOE4 isoform-dependent
pathogenic effect on cardiovascular function in mouse
models, in vitro studies and human studies [34, 35, 41,
68]. In the case of lipid transport, several studies have
shown that APOE4 carriers have increased hypolipidated
APOE compared to APOE3 and APOE2 carriers [69]
along with reduced APOE levels in the CSF of Ap-
positive APOE4 carriers [70]. These observations hold

Pathogenic effect of ‘ QY
APOE isoforms on AD <&
related pathways N -

\:\ 7» 7/

AB Burden

E4 > E3 > E2 [51,52]

E4 > E3 >E2 [49,50]
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E4 > E3 > E2 [58,60]

E4 > E3 > E2[61,62,63]

Neuronal Toxicity

E4 > E3 > E2 [11,52]

E4 > E3 [49,55]

E4 > E3 > E2 [53,79]

Glucose Metabolism

E4 > E3 > E2 [58,59]

E4 > E3 > E2 [58,60]
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Synaptic Function

E4 > E3 > E2 [80,81]

E4 > E3 [49,82]

E4 > E3 > E2 [80,83]

Inflammatory
responses

E4 > E3 > E2 [11,86]

E4 > E3 > E2 [84,85,87]

E4 > E3 > E2 [88]

Tau-mediated
neurodegeneration

(E4, E2) > E3 [11,12]
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Fig. 1 Congruence of the effects of apoE between human studies, mouse models of AD and in vitro cell culture models. apoE influences
multiple pathways in the AD cascade in an isoform-dependent manner. We compared the concurrence of available research data in mouse
models and in vitro models versus clinical studies with human patients. Pathways indicated in the green color indicate a broad consensus of
APOE isoform effect between mice, men and in vitro models where E4 is associated with an increased pathological risk when compared to E3 or
E2 isoforms (E4>E3>E2). Data from the pathways indicated in yellow background are not in complete congruence between human studies,
mouse model experiments and in vitro data. Interestingly, even within a set of studies in a given experimental system, there is disagreement in
between the observations, which is marked by superscripted symbols that refers to the disparate studies. The symbols (< or >) indicate the order
of increased pathological effect for the APOE isoforms. The effects listed here are specific to only classical AD pathology and excludes data on a-
synuclein and TDP43 which are associated with diseases such as PDD and DLB. *, conflicting reports [see ref 40]; #, conflicting reports [see ref 41];
9, studies compared APOF4 TR, Apoe KO, and wild type C57BL6J mice. The references presented are representative and not an exhaustive list
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true in primary rat neuron cultures and human iPS cell-
derived astrocytes [71, 72] as well as APOE TR mice [73,
74]. However, there are some conflicting reports from
human studies, which did not observe any isoform-
dependent differences in APOE levels in the CSF col-
lected from individuals at different ages [41].

APOE has been implicated in other metabolic and
cognitive functions. In the case of insulin signaling and
glucose metabolism, data from human brain scans, mice
and in vitro cell culture largely agree that APOE4 iso-
forms cause the most functional impairment [58—63]. In
terms of regulating brain function, APOE4 is the most
pathogenic in terms of brain connectivity and default
mode network function in humans whereas the evidence
comparing network connectivity in mouse models carry-
ing APOE4 genotype is uncertain as the experimental
controls did not include the APOE3 or APOE2 mice co-
horts [13, 49, 75-83]. In human iPS derived neurons,
APOE4 led to elevated number of synapses and in-
creased frequency of synaptic transmission [49]. Regard-
ing inflammation, there is a general agreement across
models that APOE4 is the most pathogenic [11, 84—88].
In contrast, there is evidence implicating APOE4 in im-
paired BBB integrity in humans, mouse models and cell
culture models, although a study in APOE4 TR mice did
not reveal any APOE-related dysfunction in BBB [36, 37,
40, 67, 89-91]. Overall, most of the data from rodent
models and human patients show congruence (Fig.1).
However, given that there are basic differences between
mice and human lipid profiles as well as the structure of
apoE itself, it is important to remain cautious of the inher-
ent variations that might affect directly translating APOE
targeted therapeutics from mouse models to humans.

Therapies in AD

AD still has no effective treatments or therapies despite
years of research. Dozens of drugs have proceeded to
clinical trials, ranging from Af targeting antibodies to
therapies targeting tau or metabolic pathways [92]. Sev-
eral factors may have influenced these discouraging out-
comes - perhaps the drugs are targeting the wrong
pathological substrates, or that the treatments are being
administered too late, or that a multi-target drug design
is needed [93]. With the steady growth of an aging
population, the increasing cost for care, and the failure
of therapies in clinic, there is a call for more targeted
‘precision therapy’ - treating AD patients stratified based
on their APOE genotype.

It is well-known that targeting anti Ap immunother-
apies to patients stratified for APOE genotype can lead
to better outcomes. In particular, in MCI patients the
APOE4 allele seems to adversely affect the therapy out-
comes by modulating the treatment efficacy (disease
progression) or safety profile (vulnerability to brain
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edema) relative to other APOE alleles [94]. Having said
that, AD therapies directly targeting specific APOE iso-
forms are still mostly in developmental phases [95]. It is
also possible that such APOE targeted therapies could
help with co-morbidities associated with dementia or
aging, such as diabetes and cardiovascular disease for E4
carriers, vascular dementia for E4 carriers, neuroinflam-
mation for E4 carriers and type III hyperlipoproteinemia
for E2 carriers. Whether APOE by itself is druggable is
debatable; however, it is tempting to suggest that target-
ing CNS APOE specifically early in the disease process
could alter the pathologic trajectory of AD either directly
by altering CNS pathologies like A and tau and perhaps
indirectly by influencing related sequelae, such as in-
flammation, metabolic impairment and vascular dys-
function. Ultimately, it is possible that a cocktail of
drugs targeting APOE function in conjunction with
other anti-A[} approaches that either limit AP plaques or
inhibit AP production can be used at different stages of
the disease to achieve significant disease modification.

APOE as a therapeutic target in AD

In the next few sections, we will consider currently avail-
able preclinical interventions, therapies that are in early
clinical studies in AD as well as some new research on
emerging targets that target APOE specifically (Table 1).

Altering levels of APOE4 as a potential disease modifying
therapy

APOE, especially APOE4, binds to AP, playing a key role
in AP deposition and clearance. Several studies have
shown that simply reducing APOE4 levels (such as cre-
mediated excision of APOE4 or creating haploinsulffi-
cient APOE4 models) lowers brain AP levels in APP
transgenic mice [96, 97]. Other approaches such as
blocking AB-APOE4 interaction can also lead to benefi-
cial effects, prompting the development of strategies to
either reduce the availability of APOE4 or prevent its
toxic interactions.

Anti-APOE4 immunotherapies

Similar to anti-Ap antibody-based therapies, the idea be-
hind anti-APOE4 antibodies is that these antibodies will
be able to cross the BBB and neutralize the negative ef-
fects of APOE4, even if only a small amount of anti-
bodies can effectively enter the brain [98]. APOE4 has
already been implicated in A deposition, and along with
other amyloid-associated proteins it is found in Ap de-
posits. Thus, the idea is that if isoform-specific anti-
bodies can sequester pathogenic forms of APOE, it can
prevent AP build-up in the brain. Indeed, in mouse
models, anti-APOE antibodies can efficiently inhibit the
formation of AP deposits when introduced before the
onset of pathology [98]. More interestingly, these
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Table 1 A selection of APOE based therapeutics used in rodent models and and clinical testing

Drug Rationale Developed by Reference/Clinical Trial Identifier
CS-6253 Increase APOE lipidation by activating Tel Aviv University/Artery  Ref 125

ABCA1 Therapeutics
CN-105 APOE mimetic CereNova/AegisCN LLC Phase1: NCT02670824 (ICH); Ref 231

Phthalazinones, pyrazolines
APOE antibody Targeting non-lipidated APOE

Anti-sense oligonucleotide Reduce expression of APOE4

Gene Therapy Biological: AAVrh.10 hAPOE2 vector

Bexarotene Alter APOE production, APOE lipidation
and AR clearance

Probucol Cholesterol lowering drug

AGB101 Reduce APOE4-dependent abnormal hip-

pocampal network activity

Rosiglitazone
response)

Epigallocatechin gallate (EGCG) +

Small molecule structure-correctors

Anti-diabetic (APOE allele dependent

Correct APOE4-dependent cognitive

Gladstone Institute/E- Ref 132
Scape bio

Washington University/ Ref 99
Denali therapeutics

Washington University/ Ref 104

lonis
Phase 1: NCT03634007

Phase 1: NCT02061878
Outcome: No change in AB;
increased CSF APOE

Phase 2:NCT01782742
Outcome: No benefit in APOE4
patients; Ref 114

Phase1/2: NCT02707458 Ref 232

Cornell University

ReXceptor Inc. and C2N

Cleveland Clinic

McGill University/Douglas
Hospital Research Center

Medical College of Phase 2: NCT03461861 Ref 233

Wisconsin

Phase3: NCT00348140
Outcome:No effect on mild to
moderate AD;

Ref 234

Recruiting: NCT03978052. No direct

GlaxoSmithKline

Parc de Salut Mar

multimodal intervention (diet, decline references found but see Ref 235
exercise)
Exercise Relationship of APOE4 to CBF and blood-  University of Kansas Recruiting:
based biomarkers (IGF-1, VEGF, BDNF) Medical Center NCT04009629
Ref 236

antibodies were also able to attenuate plaque burden
when introduced in mice with pre-existing Ap deposits,
suggesting that this antibody could work as a therapeutic
agent [98]. In a subsequent study, anti-APOE antibodies
also led to improved spatial learning performance and
resting-state functional connectivity while having no ef-
fect on total plasma cholesterol in APP transgenic mice
[99]. In this study, topical application of anti-APOE anti-
bodies directly onto the brain prevented deposition of
new AP plaques as well as cleared pre-existing plaques.
The fact that these anti-APOE antibodies can disrupt
the direct binding of apoE to AP deposits is very promis-
ing, as this might work synergistically with anti Ap im-
munotherapy in APOE4 patients to achieve a higher
degree of AP reduction. More recently, Liao et al. re-
ported that the antibody ‘HAE-4’ that preferentially rec-
ognizes the nonlipidated forms of APOE4/APOE3 over
the lipidated versions is highly effective in preventing Ap
deposition by a FcyR-dependent mechanism in an APP/
APOE4 mouse model [100]. Following direct infusion
into the brain or following intraperitoneal administra-
tion, HAE-4 reduces total AP plaque burden but does
not alter the fibrillar plaque load. Surprisingly, this

antibody when administered peripherally was more effi-
cient at CNS target engagement than when administered
via direct brain infusion. This study is important in two
ways — one that it demonstrates that non-lipidated
forms of APOE4 may be preferentially pathogenic and
second, that since the non-lipidated form of APOE4 is a
small fraction of the total CNS APOE burden, this anti-
body would not be titered out by total APOE and could
be efficacious at a lower or less frequent dose [101].

Antisense oligonucleotide therapy

Based on the hypothesis that the reduction of APOE4
expression could reduce AP accumulation and thereby
alleviate AP pathology and cognitive deficits that typic-
ally follow, some groups have used antisense knockdown
approaches. Antisense oligonucleotides (ASOs) are syn-
thetic polymers that can be used as therapeutic agents
by disrupting the synthesis of a particular protein and
are considered as first line treatments in several neuro-
degenerative disorders such as polyneuropathy, muscular
dystrophies and spinal muscular atrophy [102]. With re-
gard to AD, there are only a few investigational ASO
mediated therapies in clinical testing — a notable one
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being the anti tau ASO in Phasel/2 (BIIBO80 from
Ionis/Biogen/Washington University) [103]. In regard to
targeting APOE expression with ASOs, the effort is still
in the preclinical phases of testing.

ASOs targeting APOE receptors have also been tested
in AD mouse models, for example an ASO specific for
corrective splicing of ApoER2 resulted in improved syn-
aptic function as well as learning and memory in the
CRNDS8 mouse model of AB pathology [104]. In mouse
models, ASO treatment targeting specifically APOE have
been successful in reducing AP pathology in APP/PS1
mice when treated before the onset of AP deposition
[105] (Table 1). However, it is unclear whether such
knock-down strategies will work in the presence of pre-
existing AP deposits, suggesting that this type of therapy
may have a limited window of opportunity. On a positive
note, compared to agonists of ApoE receptors that result
in systemic adverse effects in lipid metabolism, ASOs do
not show such side effects. Combined with the success-
ful ASO based therapies being tested in Huntington’s
and Amyotrophic Lateral Sclerosis (ALS) patients and
the latest developments in ASO chemistry that can dra-
matically improve its pharmacokinetic and pharmacody-
namic properties, ASO based therapies do have potential
as promising future therapeutic for AD patients [106].

Upregulating APOE expression through nuclear receptor
agonism

APOE expression is induced by the nuclear receptors,
peroxisome proliferator-activated receptor gamma
(PPARY) and liver X receptors (LXR) in coordination
with retinoid X receptors (RXRs) [107]. GW3965, an
agonist for LXR, increases Abcal and Apoe protein
levels, reduces Af levels and improves cognition in the
APP/PSI mouse model [108]. This result was Abcal-
dependent, as GW3965 failed to alter AP levels in APP
transgenic mice lacking Abcal. In another study, the
RXR agonist Bexarotene (Targretin®), used to treat T cell
lymphoma, was used in the APP/PS] transgenic mouse
model. In a study involving a relatively small cohort,
Bexarotene treatment reduced AP accumulation in an
APOE-dependent manner when orally administered
to these mice [109], though several groups were unable
to recapitulate the beneficial effect on plaque burden in
similar mouse models [110-112]. Based on the original
study that showed that bexarotene was effective in both
preventive and therapeutic modes, it was incorporated in
a proof of mechanism Phase IB trial in E3/E3 healthy
adults [113] (Table 1) as well as tested in a small cohort
of AD patients, called BEAT-AD study [114]. In the
BEAT-AD study, bexarotene lowered CNS A levels (by
PET imaging) but did not produce any cognitive benefits
[114]. Unfortunately, bexarotene treatment increased
blood lipid levels in these patients increasing their risk
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for stroke and heart attack. In a Phase IB proof of mech-
anism trial in young healthy APOE3 carriers, researchers
were able to measure plasma and CSF levels of APOE
using the stable isotope leveling kinetics (SILK) method.
Though APOE levels increased moderately in the CSF,
there was no effect on synthesis or clearance of AP in
CSF in these individuals [113]. One reason for this may
be the poor CNS penetration of bexarotene in human
patients (~low nM range) [113]. Notably, in mice the
BBB is extremely permeable to bexarotene [115]. This
finding raises a general cautionary issue regarding trans-
lation of drugs from rodents to humans. Coupled with
the hepatotoxicity of bexarotene, the low CNS pene-
trance of drug resulted in disappointing forecast for
translation to AD patients.

Stimulating APOE expression through HDAC inhibition
Histone deacetylase (HDAC) is a class of enzymes that
remove acetyl groups from histones in DNA leading to
gene silencing [116]. HDACs have been shown to play a
central role in regulation of genes involved in the lipid
metabolism pathway [117] as well as genes involved in
long term memory formation and cognition [118]. A re-
cent study in human astrocytoma cells showed that
HDAC inhibition can stimulate APOE expression, inde-
pendent of LXR and RXR [119]. Through the use of a
phenotypic screening strategy utilizing various chemoge-
nomics libraries, pan Class I HDAC inhibitors (MS275
and CI994) were found to increase APOE expression
and secretion by astrocytes via an LXR-independent
pathway [119]. These recent studies offer a new ap-
proach towards modulating APOE function.

Restoring or recalibrating APOE functions can also
alleviate CNS and peripheral pathologies

Another option for potentially exploiting APOE func-
tionality for AD treatment is regulating or restoring the
normal function of APOE that is typically lost, especially
in patients carrying the APOE4 isoform. Investigators
have been pursuing strategies to raise overall levels of
APOE function by increasing its lipidation as well as
using small molecules to modulate APOE4 structure or
function to more closely resemble APOE3. Some of
these methodologies are primarily geared to recoup the
loss of function in APOE in the APOE4 patients whereas
others target the toxic gain of function aspects that
APOE4 may have on AD-related pathology.

Small molecules that enhance ABCAT1-mediated APOE4
lipidation

Among all APOE isoforms, APOE4 is unique in that it
has increased propensity of domain-domain interactions
that reduces lipid binding to the C terminal domain
leading to loss of stability and function [120, 121]. The
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presence of Argll2 in APOE4 enhances the intramo-
lecular interaction between its N-terminal domain and
the C-terminal domain via a salt bridge known as the
APOE4 domain interaction. As a result, APOE4 is typic-
ally hypolipidated or ‘lipid-depleted’” which has been pos-
tulated to correlate with the pathogenicity inherent to
APOE4 [69]. In general, APOE lipidation is highly reliant
on the ATP-binding cassette transporter Al, or ABCAI,
which moves lipids into apolipoproteins and is known to
protect against atherosclerosis [122]. Indeed, humans
lacking functional ABCAI have lower APOE levels and
increased risk of AD and cardiovascular disease [123].
Consistent with this observation, deficiency of Abcal ex-
acerbates amyloidogenesis while overexpression of
ABCA]1 reduced the amyloid load in PDAPP transgenic
mice [124]. Supporting the hypothesis that ABCA1-
mediated lipidation is crucial AP clearance, subsequent
studies have upregulated ABCA1 with peptides and vari-
ous small molecules. An example of a small peptide that
activates Abcal is CS-6253 (Table 1). Intraperitoneal in-
jection of CS-6253 into APOE4 TR mice 1) upregulated
Abcal; 2) induced lipidation of APOE4; and 3) reduced
cognitive deficits, tau hyperphosphorylation and Ap ac-
cumulation [125]. In a follow-up study using APOE4 TR
and APOE3 TR mice, the authors showed that CS-6253
also normalizes plasma APOE4 lipidation and stability to
match APOE3 mice and additionally, this peptide was
able to partially normalize plasma apoA-I and apo] levels
in APOE4 TR mice [126]. Another strategy to upregulate
Abcal is by using ASOs against microRNA-33. Inhib-
ition of microRNA-33 by ASOs in cultured neurons and
APP transgenic mice reduces AP levels [127, 128]. With
the assumption that these drugs do not disrupt lipida-
tion state and the normal biological function of APOE3,
these studies support the notion that activation of
ABCAL to stabilize lipidation profile of APOE4 is a vi-
able therapeutic target. Taken together, these studies
demonstrate that correcting the hypolipidation state of
APOE4 may be enough to alleviate AD-type pathologies.

Small molecules as APOE4 structure correctors

The domain interaction property of APOE4 reduces its
secretion from cells [129] and concurrently makes it
protease-labile [130], leading to pathogenic effects [131].
Thus, another potential therapy would be the disruption
of this APOE4 domain interaction using ‘structural cor-
rectors’ which are expected to negate the pathological
consequences of this domain interaction (Table 1). A
study using a FRET system coupled with high through-
put screening identified several small molecules that
could be used as structural correctors [132]. Treatment
of Neuro-2a cells expressing APOE4 with such structure
correctors caused the protein to become more ‘APOE3-
like’ both structurally and functionally. By restoring
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mitochondrial cytochrome c¢ oxidase levels, this treat-
ment reversed some of the detrimental effects of APOE4
in Neuro-2a cells. In another study using a human cell
line, similar effects were observed using the small mol-
ecule structure corrector PH002. The compound de-
creased APOE4 fragmentation, increased GABAergic
neuron numbers, reduced phosphorylated tau and Ap
levels in a dose-dependent manner [55]. The studies
provide proof of concept that disrupting the APOE4 do-
main interaction using structure correctors could be
druggable target in AD.

APOE mimetic peptides regulate function via competing for
receptor binding

Using peptide mimetics that are structurally similar to the
lipid binding class A amphipathic helix found in apokE, it is
possible to regulate the lipidation and secretion of APOE.
These peptides are so designed as to promote cholesterol
trafficking, anti-inflammatory signaling and anti-
thrombotic effects — properties that have been used in tar-
geting systemic disorders such as atherosclerosis and cor-
onary artery disease [133] or acute brain injury models
[134-136]. One example is an 18 amino acid peptide with
no known natural homologs called 4F (Ac-D-W-F-K-A-F-
Y-D-K-V-A-E-K-F-K-E-A-F-NH2) that binds to LDL
(particularly oxidized phospholipids and unsaturated fatty
acids) and HDL at a site that is recognized by APOE
[137]. In primary glial cell cultures derived from humans
or mice, 4F increased APOE lipidation and APOE secre-
tion [137] and reversed aggregated AP-induced blockage
of glial APOE secretion. In a second study using APP
overexpressing Drosophila, two novel APOE mimetics,
COG 112 and COG 113, prevented neurodegeneration
and improved memory, though AP deposition was not
changed [138]. This suggests that such APOE mimetics
can alter AD-type dysfunction through altering lipid me-
tabolism that may be independent of Ap pathology. These
peptides, when used in CVND-AD transgenic mice
(SWDI-APP/NOS2(-/-)) improved memory as well as re-
duced AP plaques and phosphorylated tau levels [139].
One study showed that such mimetic peptides are effica-
cious in APOE3 TR or APOE2 TR mice, but had no effect
in APOE4 TR mice [140], suggesting isoform-specificity.
Another APOE mimetic peptide derived from the receptor
binding region of APOE a helix, CN-105 (Ac-V-S-R-R-R-
NH2) has successfully completed Phase I clinical trial in
patients with intracerebral hemorrhage (ICH) (Table 1).
This peptide is BBB penetrant and reduces neuroinflam-
mation and neuronal injury in mouse models of acute
brain injury mouse models [135, 136] but this peptide has
not been tested in rodent AD models. Given the beneficial
role of APOE mimetics, future studies in AD mouse
models and cell culture systems with such mimetics are
warranted.
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Small molecule inhibitors of APOE-A interactions

As previously stated, APOE, especially APOE4, is nor-
mally found within AP deposits [141]. Inhibitors of pro-
tein—protein interactions (PPI), once considered
undruggable, are now emerging as a tour de force be-
cause of dramatic improvement in understanding of PPI
scaffold chemistry [142]. An advantage of this method is
that these are often naturally occurring molecules that
can be very selective because of their precise targeting
[143]. One such inhibitor that disrupts the binding of
APOE to AP is a peptide mimetic called AB12-28P,
which is a non-fibrillogenic and non-toxic AP} derivative
that happens to be BBB permeant [144]. This peptide, by
blocking the binding of APOE and Ap at residues 12 to
28, reduced Ap-induced neurotoxicity in cell culture.
Further studies revealed that AP12-28P had a strong
pharmacological effect in vivo where systemic adminis-
tration of the peptide resulted in reduction of AP de-
posits and in general a reduction of CNS Af in two
different APP transgenic mouse lines [145]. Admi-
nistration of AP12-28P also prevented working memory
deficits in mice, bolstering its further translatability [145,
146].

APOE is expressed predominantly from astrocytes
in the CNS [147, 148]. However, APOE synthesized
by astrocytes can be neurotoxic, to the extent that
specifically deleting astrocytic Apoe rescues spatial
learning and memory deficits in the APP/PS1 mouse
model [149]. This is also supported by a study that
used a co-culture system of neurons and astrocytes to
investigate the role of APOE on intraneuronal accu-
mulation of AP [150]. Intraneuronal AP accumulation
was higher in neurons co-cultured with wild-type
mouse astrocytes compared to the cultures exposed
to Apoe KO astrocytes reinforcing the idea that APOE
plays a key role in AP proteinopathy. Treatment with
AP12-28P, which disrupts APOE-AP interaction, sig-
nificantly lowered the amount of intraneuronal AP as
well as inhibited the loss of synaptic proteins in this
co-culture system [150].

Another example of an inhibitor of APOE-Ap inter-
action is the 6KApoEp peptide that inhibits the bind-
ing of APOE to the N-terminus of APP [151]. This
peptide contains residues 133-152 of APOE protein
conjugated to six lysine residues at the N terminus.
When 6KApoEp was injected into the 5XFAD mouse
model of amyloid pathology, both AP and tau path-
ologies were reduced concomitant with improved
memory and hippocampal-dependent learning. How-
ever, 6KAPOEp therapy did not alter the cholesterol
or APOE levels in 5xFAD mice. These results demon-
strate that apoE-Ap interaction inhibitors could po-
tentially be used for therapeutic reduction of AP and
tau burden in the CNS.
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HDAC inhibition regulates endolysosomal function

Another group of researchers reported that HDAC regu-
lates endolysosomal function [152, 153]. Initially, using
yeast microarray databases, they identified Nhx1 as a
major HDAC regulated factor induced during nutrient-
limiting conditions [152]. Nhx1 is an endosomal Na+/
H+ exchanger (eNHE) whose main function in yeast is
vacuolar alkanization. The mammalian homolog of
NHx1 was identified as Nhe6 that is regulated by
cAMP-response element-binding protein (CREB) and
plays a key role in nutrient- and HDAC-dependent regu-
lation of endosomal pH [152]. This research group used
three different pharmacological strategies to activate
HDAC/CREB-dependent Nhe6 expression in immortal-
ized astrocytes expressing APOE3 or APOE4 and ob-
served that Creb-dependent Nhe6 expression corrected
AP clearance deficits observed in APOE4 astrocytes. In a
second report, this research group could mechanistically
relate this finding to dysfunction in LRP1 endocytosis
[153]. Using both Nhe6 deficient mice and immortalized
APOE4 astrocytes, they showed that Nhe6 deficiency
causes endosomes to become hyperacidic, which im-
pedes AP clearance by impairing endocytosis of LRP1
[153]. Inhibition of HDAC could normalize Af clearance
by restoring Nhe6 in the APOE4 astrocytes. Though
these HDAC inhibitors are efficacious in other systemic
disorders such as heart failure [154] and cancer [155],
the widespread clinical applications is limited due to se-
lectivity issues and toxicity issues.

Recalibrating APOE function using gene editing and gene
therapy

Several experimental strategies have been tested to alter
the prevalent apoE isoform in rodent models and
human-derived induced pluripotent stem cells (iPScs) as
a means to rectify the neurotoxic functions of APOEA4.
Various studies have used CRISPR-mediated or adeno-
associated virus (AAV)-mediated gene delivery in these
model systems. However, these strategies have to con-
tend with ethical and safety hurdles before these can be
translated to clinical settings.

CRISPR/Cas9 mediated gene editing

One promising method for gene editing is using the
CRISPR (Clustered Regularly Interspaced Short Palin-
dromic Repeats) system that has just entered Phase 1
trial for treatment of relapsed refractory multiple mye-
loma and related cancers (NCT03399448: University of
Pennsylvania, Parker Institute for Cancer Immunother-
apy, Tmunity Therapeutics). CRISPR/Cas9 basically
functions like a pair of molecular scissors where an edit-
able guide RNA leads the Cas9 ‘scissor’ to a specific site
of the genome to cut where a different nucleotide se-
quence can then be inserted to correct a genetic defect
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[156]. CRISPR/Cas9 has already been proven successful
in iPS cells, where cells derived from a healthy E3/E4 in-
dividual were converted into E2/E2, E3/E3, E4/E4, or an
APOE KO genotype [157]. A second group used iPS cells
derived neurons from an APOE4 carrier and found that
CRISPR-editing the APOE4 reduced tau phosphorylation
and inomycin-induced cell death [158]. Interestingly,
though in the CNS APOE is mostly synthesized by astro-
cytes, this study showed that editing neuronal APOE to
the E3 isoform in these iPS-derived neurons is sufficient
to protect them from cytotoxic injury [158]. Another
study generated different brain cell types and organoids
from iPS cells derived from a human subject — on edit-
ing the APOE4 allele to APOES3 in these iPS-derived cells
increased AP clearance and reduced Af in the organoid
cultures [49]. This study shows that targeting APOE in
various CNS cell types can lead to beneficial functional
alterations in patient-derived in vitro systems. In animal
models, CRISPR/Cas9 is relatively safe and has been suc-
cessfully used to generate APOE KO in pigs and rats
with little to no off-target incidents or mosaicism [159—
161]. However, there is always the possibility of unex-
pected edits in the targeted and non-targeted portions of
the genome leading to unanticipated side effects as well
as triggering cancer risk [162, 163]. Inherent issues of
CRISPR/Cas9 include off-target gene editing and mosai-
cism or where only some of the copies of the target gene
are actually edited which could result in harmful side ef-
fects or unreliable treatment. Though data from iPS cells
is extremely promising, much more research and ethical
hurdles need to be cleared before gene editing with
CRISPR/Cas9 is ready to be used as a clinical intervention.

AAV-APOE?2 biologic therapy

APOE4 has been established as the risk allele for AD,
and APOE?2 is protective. This set the foundation for the
idea that if APOE2 could replace or be overexpressed in
APOE4 carriers, there would be a compensatory benefi-
cial therapeutic effect. Indeed, there is a current trial
scheduled to start that intends to test the safety of AAV-
APOE2 expression in APOE4 carriers (Table 1). Patients
will be infused with AAV-APOE2 in the cisterna magna
and then followed up for at least 2 years to assess safety
of this biologic therapy.

There is a robust rodent literature showing the effects
of AAV-mediated APOE expression in primarily mouse
models of amyloidosis. For example, intracerebral injec-
tion of AAV-APOE4 in APP/PS1 and Tg2576 mice re-
sulted in increased AP burden whereas AAV-APOE2
lowers AP burden [164]. However, a limiting factor of
this study is that this was done in the presence of mur-
ine Apoe that may itself influence AP deposition. In a
subsequent study from a second group, expression of
AAV-APOE2 was shown to reduce AP plaque burden in
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a trigenic mouse (APP/PS1/APOE4 TR) [165]. This study
also showed that gene delivery of APOE2 was most ef-
fective before the onset of amyloid burden, suggesting
that in order to be a successful therapy the AAV would
need to be injected much before the onset of symptoms
in patients which poses its own challenges. Further
translational studies on non-human primates revealed
that intra-cisternal delivery of AAV-APOE2 led to wide-
spread expression in the CNS which established a safe
procedure for CNS delivery of biologics [166]. Because
of the inherent risk in any surgical procedure inside the
CNS, whether such AAV-APOE2 biologics can be dir-
ectly delivered into the AD-affected areas of the human
CNS needs to be cautiously determined. However as
Zhao et al showed in mice, even intrathalamic injections
were modestly effective in reducing AP burden in neu-
roanatomically distant areas such as hippocampus [165].
Another confounding variable is that while APOE2 may
decrease AP plaque formation, it may increase tau phos-
phorylation [12]. By injecting AAV-P301L tau into
APOE TR mice, this research group found that mice ex-
pressing APOE2 had higher NFT levels compared to
mice expressing APOE3 or APOE4. Along with data
showing genetic association between APOE2 with PSP in
humans, this brings up the question if overexpression of
APOE2 could inadvertently exacerbate tau pathology
while alleviating amyloid burden. In addition, questions
regarding effective dosage to achieve optimum biodistri-
bution and cell type transduction, pre-existing host im-
munity and long term CNS consequences still remain
safety concerns in AAV therapies. In addition, while
AAV-APOE2 gene therapy has promise, more know-
ledge on the neuropsychological and neuropathologic
consequences of APOE2 overexpression is needed.

Lifestyle and diet can also regulate APOE function
Metabolic syndrome (MetS) can be characterized as a
cluster of disorders that are associated with atheroscler-
osis, diabetes, hypertension, and has been linked to de-
mentia in general. A few studies have indicated that the
APOE4 allele is associated with increased risk of MetS
leading to dementia [167]. Multiple case studies have thus
examined the relationship of interventions in lifestyles
such as, but not limited to, diet and exercise to reduce the
risks associated with the APOE#4 isoform. Though there is
still no strong precedent for these lifestyle factors to ef-
fectively reduce metabolic dysfunction and AD risk via af-
fecting APOE function, these interventions hold promise
as future and easily translatable strategies in the personal-
ized medicine niche due to their safety profiles.

Exercise
Based on epidemiological records and rodent studies, an
intuitive therapeutic strategy for AD patients is exercise.
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Exercise increases cerebral blood flow, neurogenesis, and
hippocampal volume as well has a positive impact on
memory in humans [168, 169]. In wild type mice, exer-
cise resulted in prevention of age-related neurovascular
changes, especially in the context of the Apoe gene [170].
This was consistent with the idea that APOE plays a key
role in functional impairment of the neurovascular unit
during aging and exercise can reverse these effects by
modulating neurovascular health.

Physical exercise can have a beneficial effect in AD
type dementias by altering neuroplasticity as observed in
both human case studies and rodent studies [171, 172].
However, there are still unresolved issues regarding the
relative efficacies of different exercise regimens and
presence of sex-dependent effects [173]. In a cohort of
201 cognitively normal adults, APOE4 carriers who do
not exercise frequently were shown to have an increased
risk of AP deposition [174]. However, this study did not
report how many of these sedentary APOE4 carriers
went on to develop actual AD-type dementia. A more
recent study with 200 individuals diagnosed with mild
AD addressed this issue, examining if exercise held any
cognitive or physical improvements for APOE4 carriers
[175]. The data did support that exercise intervention
improved cognitive function, and was found to be more
beneficial to APOE4 carriers. However, out of the five
tests for cognition, only one test showed a statistically
relevant correlation between exercise and APOE4 status.
Along with the small sample number and lack of infor-
mation on the ethnicities of the cohort, larger studies
would be required to validate any of the conclusions and
extend its application in the clinical setting.

Statins

Statins, or HMG-CoA reductase inhibitors, are a class of
drugs that are typically prescribed to lower cholesterol
levels in the blood. Researchers have postulated that in-
creased brain cholesterol levels, or at the very least dis-
ruption of lipid homeostasis, influences AD pathology
and risk. Epidemiological studies support that higher
serum cholesterol levels are linked to increased risk of
AD independent of APOE genotype [176—178]. A series
of epidemiological studies looked at the effect of statins
on dementia in general, spurred by observations that
usage of statin led to a significantly lower rate of cogni-
tive decline over 6 months [179]. However, more re-
cently the LEADe trial of 2010 and the CLASP study of
2011 that assessed the use of statins in AD patients
found no net benefit or harm in terms of cognitive de-
cline relative to the placebo group [180, 181]. Further
support for the idea that statins do not generally benefit
AD patients comes from another systematic review
[182]. These findings, however, contradict another large
study of Medicare beneficiaries which established a
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beneficial association between statin use and reduced
AD incidence in specific populations [183]. The data,
however, showed wide variations in efficacy of statins
based on race and sex; for example, pravastatin was as-
sociated with reduced AD risk only among white women
whereas atorvastatin was efficacious in white women,
black women and Hispanic men. This finding suggests
that overall statin use may not be beneficial for all
people at risk for AD, but in a future of personalized
medicine, physicians should consider whether statins
could have higher health impact in specific patient pop-
ulations based on sex, ethnicity, prevalent health condi-
tions, and APOE genotype.

Ketogenic diet

Modern diets that are high in carbohydrates and low in
fats elevate blood glucose levels after ingestion and can
alter APOE function through glycation and oxidative
damage [184]. These diets are associated with impaired
brain glucose metabolism, which is an AD biomarker.
Feeding APOE TR rodents a high fat diet affected the
plasma levels (E4>E3) and hippocampal levels (E3<E4)
of APOE in an isoform-dependent manner [185]. Given
that APOE4 carriers have abnormally low rates of glu-
cose metabolism compared to other APOE genotypes, it
is possible that these diets may profoundly alter meta-
bolic status in APOE4 patients [186]. A proposed
method to supplement brain health could be the use of
ketone bodies that are produced by using a ketogenic
diet, or a high-fat low-carbohydrate diet (reviewed in
[187]) that can alter the microbiome and improve neuro-
vascular functions in young healthy mice [188]. In a
small clinical study on AD patients with mild cognitive
impairment (NCT02984540), certain gut bacteria
showed significant correlation with AD CSF biomarkers
(AP and phosphorylated tau) and further a modified
Mediterranean-ketogenic diet altered gut bacterial pro-
file [189], suggesting that such diets can regulate AD
biomarkers through regulating gut microbiome and as-
sociated metabolites. Some diet intervention trials have
reported that such regulated diets might have an effect
on the neuropsychiatric profile of early AD patients
[190], and some interventions show an APOE-
dependent effect [191, 192]. These studies, however
promising, need to be considered as they are — isolated
case studies or small trials that require larger placebo
controlled investigation for validation and further studies
in rodent models are warranted.

Insulin resistance and APOE

As previously stated, diabetes and impaired insulin sig-
naling are factors that increase the risk for MetS and are
associated with increased AD risk [193, 194]. Peripheral
insulin resistance is associated with lower cerebral
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glucose metabolism, which is also generally true of
APOE4 carriers, and this is further associated with
poorer memory performance [195]. However, a clinical
trial using insulin nasal sprays showed a complicated
sex/APOE interaction. In the APOE4 negative group,
male AD patients improved in cognitive function
whereas women worsened, whereas in the APOE4 group,
both sexes remained equally stable [196, 197].

In mice, the role of Apoe in insulin signaling was
established in a study that showed that deletion of Lrpl,
a major Apoe receptor, led to impaired brain insulin sig-
naling and glucose metabolism [198]. Studies in APOE4
TR mice showed that age along with peripheral insulin
resistance contribute to the insulin signaling impairment
in the brain by trapping the insulin receptor inside endo-
somes and contributing to impaired glycolysis [60]. With
the current emerging knowledge on the regulation and
function of brain insulin signaling, there is a need for
further research into how insulin/glucose metabolism in-
tersects with dementia in APOE isoform-dependent
manner.

Neuroinflammation and cerebrovascular integrity in the
context of APOE function

Evidence suggests that inflammation as well as cerebro-
vascular damage play a crucial role in the pathogenesis
of AD. APOE has been shown to predispose carriers to
different neuroinflammatory profiles depending on the
isoform. For example, in the ROS/MAP kindred of
LOAD, the protective role of the APOE2 haplotype
could be traced to its counteracting a pathologic micro-
glial signature [199] though APOE4 did not show a cor-
responding pathologic effect on aged microglia [199,
200]. In mouse models, both Apoe KO mice and APOE4
TR mice upregulate pro-inflammatory phenotype when
challenged with bacterial lipopolysaccharide [201]. A re-
cent paper suggested that mouse Apoe and human
APOE4 act as a direct checkpoint inhibitor by binding
to the complement Clq and attenuating the classical
complement cascade [202]. This work has spurred inter-
est to not only investigate the function of glia-specific
APOE in the CNS but how this impacts the neurovascu-
lar unit including the BBB. This line of research has not
yet identified any druggable candidates but future re-
search into neuroinflammation and peripheral inflamma-
tion may yield potential targets that can be targeted in
an APOE genotype-dependent manner.

TREM2

Microglia are resident immune cells in the brain that help
maintain CNS homeostasis and can initiate inflammatory
reactions when this homeostasis is perturbed. In AD,
microglia can become chronically dysfunctional [203]. Re-
cent genome wide association studies have identified
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several microglial genes that regulate AD risk, foremost
among them being TREM2 [204]. The current state of
thought is that variants of TREM2 that increase AD risk
are loss of function mutations [205-207]. Recent studies
have implicated a close relationship between TREM2 and
APOE. APOE has been found to regulate the function of a
subset of microglia, which under the control of TREM2
can adopt a damage associated microglia (DAM) pheno-
type [208] that is analogous to a toxic molecular signature
of disease-associated microglia (MGnD) observed in sev-
eral animal models including AD model [209]. This
APOE-dependent phenotype is induced in phagocytic
microglia in the presence of apoptotic neurons and activa-
tion of the TREM2-APOE signaling pathway results in
functional impairment of the microglia. The authors sug-
gested that the switch from homeostatic to neurodegener-
ative state in AD-associated microglia is an initial
response to neuronal injury compounded by a failure to
switch back to a functional state. Several follow-up studies
have now shown that AP is also a ligand of Trem2 [210,
211], implicating the TREM2-APOE pathway directly in
AD pathogenesis. A recent report showed that loss of
Trem2 accelerates amyloidogenesis in mice by reducing
microglial function but these newly seeded deposits show
reduced amounts of Apoe compared to mice carrying
Trem2 [212]. Together this data suggests that microglia,
through Trem2 mediated signaling, can regulate apoE co-
deposition around AP deposits, which further has signifi-
cance in terms of AP clearance based on specific APOE
isoform [164]. Independently, in a mouse model of
tauopathy-mediated neurodegeneration, reducing micro-
glial activity through pharmacological methods increases
soluble APOE, reduces tauopathy and rescues neurode-
generation in APOE4 mice [54]. This report did not spe-
cifically look at Trem2 though another previous report
had ahown that attenuating microglial Trem2 is protective
against tau-mediated neurodegeneration [213]. Given that
this scenario of tripartite interactions between Af, tau and
APOE is mediated through microglial homeostasis, it is
tempting to suggest that targeting microglial TREM2
functions can result in APOE-isoform dependent thera-
peutic benefits. Of note, a recent report showed that the
ectodomain form of TREM2, soluble TREM2, is protective
in an amyloid mouse model by enhancing microglial me-
tabolism of A [214] and triggering microglia to an active
state [215]. Given that TREM2 facilitates microglial deg-
radation of AP preferentially complexed with LDL [210],
this raises the intriguing possibility that soluble TREM2
may have therapeutic promise. However, another cell cul-
ture study seemed to indicate that AD-associated TREM2
risk variants do not show altered binding affinity for A or
APOE [211], raising the conundrum regarding whether
TREM2-Ap interaction is functionally dependent on spe-
cific APOE genotype.
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Blood Brain Barrier

The BBB is composed of a layer of tightly packed endo-
thelial cells which keeps out neurotoxins and pathogens
from the brain, imparting a sort of unique ‘immune pri-
vileged’ milieu during healthy conditions. In AD, BBB
dysfunction and leakiness precedes neurodegenerative
changes, brain atrophy, and dementia [216]. This finding
has encouraged researchers to look into how BBB break-
down relates to neurodegeneration in a series of AD
mouse models including APOE models. It has been sug-
gested that APOE is essential for maintaining BBB integ-
rity as the BBB is leaky in Apoe KO models [35, 36, 217].
Further, APOE triggers BBB breakdown in an isoform-
dependent manner in an in vitro model (E4>E3) [91],
though another group reported that the BBB is largely
intact at least in young APOE4 TR mice [40]. This raises
the possibility that APOE4 mediated BBB disruptions
can be localized to selectively vulnerable brain regions
or may depend on other factors, such as aging or pres-
ence of amyloid angiopathy. Another group of re-
searchers found that APOE4 mice had higher levels of
the cyclophilin A (CypA)-matrix metalloproteinase 9
(MMP-9) in the pericytes. Since pericytes make up the
BBB, this can lead to degradation of tight junctions and
basement membranes and leakiness of the BBB [36].
Other studies using radioactive tracers in mouse models
or using in vitro model of mouse brain microcapillaries
showed that APOE3 and APOE2 mediate Ap clearance
through a faster route via LRP1 across the BBB while
APOE4 mediates AP clearance through VLDR at a much
slower rate possibly contributing to CNS accumulation
of AP [43]. These studies revealed a potential therapeutic
target, where researchers genetically and pharmacologic-
ally inhibited the CypA-MMP-9 pathway which resulted
in repairing the BBB and reversing the neurodegenera-
tion [36]. Curiously, loss in BBB integrity would also
imply that drugs (such as antibodies) administered per-
ipherally could gain easier access into the brains of
APOE4 individuals, leading to higher bioavailability. On
the whole, more studies are still required to establish the
relationship between APOE genotype and BBB integrity
and how this is altered in the context of neurodegenera-
tive dementia of the elderly.

Critical Challenges for targeting CNS resident APOE

One of the most critical challenges for any AD thera-
peutic is optimizing the route and mode of administra-
tion so as to achieve effective bioavailability by bridging
the BBB. A major area of research is now devoted to dis-
covering cutting edge technologies that can safely breach
the BBB. One option is to use the so-called Trojan horse
strategy utilizing bifunctional molecules, one arm of
which can be used to shuttle the APOE therapeutic
across the BBB as has been demonstrated for anti-Af
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antibodies [218]. Another new technique is using pulsed
ultrasounds that would create transient openings in the
BBB allowing the APOE therapeutic to reach the sub-
strate, as has been done to optimize chemotherapy in
glioblastoma patients [219]. Perhaps another alternative
would be to use gene therapy vectors to deliver a benefi-
cial (E2) or even the neutral form (E3) of APOE, using
specific AAV capsid serotypes that are preferentially
neurotropic even when administered in the periphery
[220, 221]. Each one of these tools have their shortcom-
ings — for example, the bridging molecules used for the
Trojan horse strategy are not particularly specific for the
BBB, leading to potential dilution or even unwanted per-
ipheral side effects. Likewise, the pulsed ultrasound and
AAYV based approaches have unknown long-term health
implications. Interestingly, a 20 amino acid stretch of
the APOE protein itself has been successfully utilized for
shuttling therapeutics across the BBB in a mouse model
of lipofuscinosis, a pediatric neurodegenerative disorder
[222, 223], suggesting the possibility of using endogen-
ous shuttling signals for efficacious delivery through the
BBB. Even with these exciting breakthroughs, several
challenges remain: if administered peripherally, how do
we prevent the APOE therapeutic to be titered by the
peripheral pools of APOE, or worse, cause systemic
metabolic dysfunction and additionally, how to safely
guide the therapeutic to the affected brain regions or cell
types once inside the brain.

Targeting APOE in other dementias
Aside from its established role in AD, not much is
known about how APOE influences disease pathogenesis
in AD related dementias such as Fronto-temporal de-
mentias (FTD), dementia with Lewy bodies (DLB) and
vascular dementia. Consequently, very few mechanistic
and therapeutic studies in mouse models are available.
The APOE?2 allele is associated with an increased risk
of ALS-FTD [224]. In another study, APOE2 and
APOEA4 alleles showed protective and increased disease
risk effects, respectively, for FTD subtypes such as be-
havioral variant FTD and semantic dementia, though po-
tential overlaps between clinical diagnosis of FID and
AD cannot be completely ruled out in this study [225].
Similarly, APOE4 appears to be a risk factor for DLB
[226] and vascular dementia [227]. There is no direct as-
sociation of APOE with other atypical parkinsonism syn-
dromes with dementia such as corticobasal degeneration
(CBD), multiple system atrophy (MSA) and progressive
supranuclear palsy (PSP) [228]. Knocking out mouse
Apoe resulted in delayed neurodegeneration in a mouse
model of synucleinopathy [229]. In mouse studies, both
APOE4 as well as APOE2 increased tauopathy burden in
two different mouse models [11, 12], raising intriguing
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possibilities of how APOE might interact with tau in the
presence of co-morbidities (such as Ap and «-synuclein).

Conclusions

APOE not only impacts lipid metabolism but various
CNS functions and neurodegenerative proteinopathy in
AD in an isoform-dependent manner. The current evi-
dence highlights how APOE isoform determines physio-
logical homeostasis in the brain and how several APOE-
targeted therapeutic approaches can have corrective or
preventive outcome(s) in neurodegenerative proteinopa-
thies, particularly in AD (Fig. 2). Many of these experi-
mental approaches are validated in various cellular or
animal models, with the overall perception that current
APOE-targeted therapies would be more effective at pre-
vention rather than treatment of those already in the
throes of the neurodegenerative cascade. If or when
these treatments make it through clinical trials, the po-
tential benefit could be greatest for APOE4 carriers,
where early intervention would slow the rate of decline
(neuropathologic or neuropsychiatric) though it is un-
likely to entirely stop the progression of disease. This is
exemplified in some of the rodent amyloid models,
where early intervention led to reduction of A deposits
but not complete clearance. However, if future research
shows that APOE alters other AD related proteinopa-
thies in these patients, such as tau or a-synuclein or in-
flammation either directly or through altering A levels,
then certain APOE directed therapies may have more
profound multi-target effects in an APOE isoform-

dependent manner. Additionally, APOE4 targeted ther-
apies might also become adjuvants to other multimodal
treatments that would target the more age-advanced
pathologies, such as neuroinflammation or BBB leakiness
[230]. Advancements in biomarkers for earlier diagnosis
and prognosis of AD, especially in an APOE-informed
population, would be invaluable for targeted therapies in
an emerging era of precision medicine. Additionally,
how such interventions will alter peripheral lipid homeo-
stasis and vascular function would also need to be deter-
mined. The safety profile of any therapeutic will thus
need to balance the total amount of APOE, lipidation
profile of APOE, vascular risk factors, inflammatory
phenotype and systemic effects. With this taken to-
gether, APOE-targeted therapeutic strategies remain a
propitious area of research for preventing or delaying
the onset of AD type dementias.
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